Up | Next | Prev | PrevTail | Tail |
LIE is a package of functions for the classification of real
Authors: Carsten and Franziska Schöbel
With the help of the functions in this module real array lienstrucin(n,n,n)
with n
being the dimension of the Lie algebra liendimcom1
can be called. Its syntax is:
liendimcom1(
)
.with
The concepts correspond to the following theorem (LIE_ALGEBRA(2)
HEISENBERG(k)
COMMUTATIVE(n-k)
Theorem. Every real
with
(cf. [Sch93])
The returned list is also stored as lie_list
. The matrix lientrans
gives the
transformation from the given basis
A more detailed output can be obtained by turning on the switch tr_lie
: before the
procedure liendimcom1
is called.
The returned list could be an input for a data bank in which mathematical relevant properties of the obtained Lie algebras are stored.
This part of the package classifies real low-dimensional Lie algebras lieclass
can be called whose syntax is:
lieclass(
)
.{LIEALG(n),COMTAB(m)},
where
{LIEALG(n),COMTAB(m),p1,p2}.
This returned value is also stored as lie_class
. The linear transformation from
the basis liemat
:
By turning on the switch tr_lie
before the procedure lieclass
is called the output
contains not only the list lie_class
but also the non-vanishing commutator relations
in the standard form.
By the value
returned list lie_class | the corresponding commutator relations |
LIEALG(1),COMTAB(0) | commutative case |
LIEALG(2),COMTAB(0) | commutative case |
LIEALG(2),COMTAB(1) | |
LIEALG(3),COMTAB(0) | commutative case |
LIEALG(3),COMTAB(1) | |
LIEALG(3),COMTAB(2) | |
LIEALG(3),COMTAB(3) | |
LIEALG(3),COMTAB(4) | |
LIEALG(3),COMTAB(5) | |
LIEALG(3),COMTAB(6) | |
LIEALG(3),COMTAB(7) | |
LIEALG(3),COMTAB(8) | |
LIEALG(4),COMTAB(0) | commutative case |
LIEALG(4),COMTAB(1) | |
LIEALG(4),COMTAB(2) | |
LIEALG(4),COMTAB(3) | |
LIEALG(4),COMTAB(4) | |
|
|
LIEALG(4),COMTAB(5) | |
LIEALG(4),COMTAB(6) | |
LIEALG(4),COMTAB(7) | |
LIEALG(4),COMTAB(8) | |
LIEALG(4),COMTAB(9) | |
LIEALG(4),COMTAB(10) | |
LIEALG(4),COMTAB(11) | |
LIEALG(4),COMTAB(12) | |
|
|
LIEALG(4),COMTAB(13) | |
|
|
LIEALG(4),COMTAB(14) | |
|
|
LIEALG(4),COMTAB(15) | |
|
|
LIEALG(4),COMTAB(16) | |
|
|
|
|
LIEALG(4),COMTAB(17) | |
|
|
|
|
LIEALG(4),COMTAB(18) | |
|
|
LIEALG(4),COMTAB(19) | |
LIEALG(4),COMTAB(20) | |
LIEALG(4),COMTAB(21) | |
LIEALG(4),COMTAB(22) | |
Up | Next | Prev | PrevTail | Front |