REDUCE

20.32 LIE: Functions for the Classification of Real n-Dimensional Lie Algebras

LIE is a package of functions for the classification of real n-dimensional Lie algebras. It consists of two modules: liendmc1 and lie1234. With the help of the functions in the liendmcl module, real n-dimensional Lie algebras L with a derived algebra L(1) of dimension 1 can be classified.

Authors: Carsten and Franziska Schöbel

20.32.1 liendmc1

With the help of the functions in this module real n-dimensional Lie algebras L with a derived algebra L(1) of dimension 1 can be classified. L has to be defined by its structure constants cijk in the basis {X1,,Xn} with [Xi,Xj]=cijkXk. The user must define an array lienstrucin(n,n,n) with n being the dimension of the Lie algebra L. The structure constants lienstrucin(i,j,k):=cijk for i<j should be given. Then the procedure liendimcom1 can be called. Its syntax is:

liendimcom1(number) .

number corresponds to the dimension n. The procedure simplifies the structure of L performing real linear transformations. The returned value is a list of the form

(i)
{LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii)
{HEISENBERG(k),COMMUTATIVE(n-k)}

with 3kn, k odd.

The concepts correspond to the following theorem (LIE_ALGEBRA(2)L2, HEISENBERG(k)Hk and COMMUTATIVE(n-k)Cnk):
Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional derived algebra can be decomposed into one of the following forms:

(1)
C(L)L(1)={0}:L2Cn2 or
(2)
C(L)L(1)=L(1):HkCnk(k=2r1,r2),

with

1.
C(L)=Cj(L(1)C(L)) and dimCj=j ,
2.
L2 is generated by Y1,Y2 with [Y1,Y2]=Y1 ,
3.
Hk is generated by {Y1,,Yk} with
[Y2,Y3]==[Yk1,Yk]=Y1.

(cf. [Sch93])

The returned list is also stored as lie_list. The matrix lientrans gives the transformation from the given basis {X1,,Xn} into the standard basis {Y1,,Yn}: Yj=(LIENTRANS)jkXk.

A more detailed output can be obtained by turning on the switch tr_lie: before the procedure liendimcom1 is called.

The returned list could be an input for a data bank in which mathematical relevant properties of the obtained Lie algebras are stored.

20.32.2 lie1234

This part of the package classifies real low-dimensional Lie algebras L of the dimension n:=dimL=1,2,3,4. L is also given by its structure constants cijk in the basis {X1,,Xn} with [Xi,Xj]=cijkXk. An ARRAY LIESTRIN(n,n,n) has to be defined and LIESTRIN(i,j,k):=cijk for i<j should be given. Then the procedure lieclass can be called whose syntax is:

lieclass(number) .

number should be the dimension of the Lie algebra L. The procedure stepwise simplifies the commutator relations of L using properties of invariance like the dimension of the centre, of the derived algebra, unimodularity etc. The returned value has the form:

   {LIEALG(n),COMTAB(m)},

where m corresponds to the number of the standard form (basis: {Y1,,Yn}) in an enumeration scheme. The corresponding enumeration schemes are listed below (cf. [Sch92],[Mac99]). In case that the standard form in the enumeration scheme depends on one (or two) parameter(s) p1 (and p2) the list is expanded to:

   {LIEALG(n),COMTAB(m),p1,p2}.

This returned value is also stored as lie_class. The linear transformation from the basis {X1,,Xn} into the basis of the standard form {Y1,,Yn} is given by the matrix liemat: Yj=(LIEMAT)jkXk.

By turning on the switch tr_lie before the procedure lieclass is called the output contains not only the list lie_class but also the non-vanishing commutator relations in the standard form.

By the value m and the parameters further examinations of the Lie algebra are possible, especially if in a data bank mathematical relevant properties of the enumerated standard forms are stored.

20.32.3 Enumeration schemes for lie1234

returned list lie_class the corresponding commutator relations


LIEALG(1),COMTAB(0) commutative case


LIEALG(2),COMTAB(0) commutative case
LIEALG(2),COMTAB(1) [Y1,Y2]=Y2


LIEALG(3),COMTAB(0) commutative case
LIEALG(3),COMTAB(1) [Y1,Y2]=Y3
LIEALG(3),COMTAB(2) [Y1,Y3]=Y3
LIEALG(3),COMTAB(3) [Y1,Y3]=Y1,[Y2,Y3]=Y2
LIEALG(3),COMTAB(4) [Y1,Y3]=Y2,[Y2,Y3]=Y1
LIEALG(3),COMTAB(5) [Y1,Y3]=Y2,[Y2,Y3]=Y1
LIEALG(3),COMTAB(6) [Y1,Y3]=Y1+p1Y2,[Y2,Y3]=Y1,p10
LIEALG(3),COMTAB(7) [Y1,Y2]=Y3,[Y1,Y3]=Y2,[Y2,Y3]=Y1
LIEALG(3),COMTAB(8) [Y1,Y2]=Y3,[Y1,Y3]=Y2,[Y2,Y3]=Y1


LIEALG(4),COMTAB(0) commutative case
LIEALG(4),COMTAB(1) [Y1,Y4]=Y1
LIEALG(4),COMTAB(2) [Y2,Y4]=Y1
  
LIEALG(4),COMTAB(3) [Y1,Y3]=Y1,[Y2,Y4]=Y2
LIEALG(4),COMTAB(4) [Y1,Y3]=Y2,[Y2,Y4]=Y2,
[Y1,Y4]=[Y2,Y3]=Y1
LIEALG(4),COMTAB(5) [Y2,Y4]=Y2,[Y1,Y4]=[Y2,Y3]=Y1
LIEALG(4),COMTAB(6) [Y2,Y4]=Y1,[Y3,Y4]=Y2
LIEALG(4),COMTAB(7) [Y2,Y4]=Y2,[Y3,Y4]=Y1
LIEALG(4),COMTAB(8) [Y1,Y4]=Y2,[Y2,Y4]=Y1
LIEALG(4),COMTAB(9) [Y1,Y4]=Y1+p1Y2,[Y2,Y4]=Y1,p10
LIEALG(4),COMTAB(10) [Y1,Y4]=Y1,[Y2,Y4]=Y2
LIEALG(4),COMTAB(11) [Y1,Y4]=Y2,[Y2,Y4]=Y1
LIEALG(4),COMTAB(12) [Y1,Y4]=Y1+Y2,[Y2,Y4]=Y2+Y3,
[Y3,Y4]=Y3
LIEALG(4),COMTAB(13) [Y1,Y4]=Y1,[Y2,Y4]=p1Y2,[Y3,Y4]=p2Y3,
p1,p20
LIEALG(4),COMTAB(14) [Y1,Y4]=p1Y1+Y2,[Y2,Y4]=Y1+p1Y2,
[Y3,Y4]=p2Y3,p20
LIEALG(4),COMTAB(15) [Y1,Y4]=p1Y1+Y2,[Y2,Y4]=p1Y2,
[Y3,Y4]=Y3,p10
LIEALG(4),COMTAB(16) [Y1,Y4]=2Y1,[Y2,Y3]=Y1,
[Y2,Y4]=(1+p1)Y2,[Y3,Y4]=(1p1)Y3,
p10
LIEALG(4),COMTAB(17) [Y1,Y4]=2Y1,[Y2,Y3]=Y1,
[Y2,Y4]=Y2p1Y3,[Y3,Y4]=p1Y2+Y3,
p10
LIEALG(4),COMTAB(18) [Y1,Y4]=2Y1,[Y2,Y3]=Y1,
[Y2,Y4]=Y2+Y3,[Y3,Y4]=Y3
LIEALG(4),COMTAB(19) [Y2,Y3]=Y1,[Y2,Y4]=Y3,[Y3,Y4]=Y2
LIEALG(4),COMTAB(20) [Y2,Y3]=Y1,[Y2,Y4]=Y3,[Y3,Y4]=Y2
LIEALG(4),COMTAB(21) [Y1,Y2]=Y3,[Y1,Y3]=Y2,[Y2,Y3]=Y1
LIEALG(4),COMTAB(22) [Y1,Y2]=Y3,[Y1,Y3]=Y2,[Y2,Y3]=Y1


Hosted by Download REDUCE Powered by MathJax