
BREDUCE User Manual

Thomas Sturm, FIM, Universität Passau, Germany∗

January 7, 2008

Abstract

This document serves as a user guide for breduce. This is a shell
script plus a supporting reduce module which together admit batch pro-
cessing of reduce jobs under Unix. breduce takes as input several re-
duce files containing input data plus a configuration file. It produces as
output a LATEXdocument with the formatted results of all computations
specified in the configuration file. Important features include the system-
atic application of all combinations of a choice of reduce switches and a
mechanism for limiting the runtime of the single computations.

1 Introduction

[Hea04]

2 Installation of breduce

The breduce distribution comprises three files:

1. An executable program breduce,

2. a supporting reduce module breduce.red,

3. this manual breduce.tex.

Make sure that breduce is executable, and put it into a directory of your choice,
which you probably want to have within your search path. Put breduce.red
into the same directory as breduce.

3 A Simple First Example

We are now going to describe an extremely simple example application of bre-
duce. This will help the users to verify that their installation is correct. Fur-
thermore it will give good first idea about what breduce does. Finally it will
explain a major part of the files maintained by breduce.

breduce is based on the concept of a series of computations to be per-
formed. A series consists of one or several instances. The user chooses a name

∗sturm@redlog.eu

1



<name> for the series. The central file describing the series is the breduce
configuration file <name>.breduce.

For our first example here, all relevant information is contained in our config-
uration file fac.breduce. For convenience, we create a new directory bredex1
to work in. Our fac.breduce reads as follows:

REDUCE=’reduce’
seriesinstances=’1 2 3 4 5 6 7 8 9 10’
command=’factorize’

The reader might have to adapt the choice for REDUCE, which is the name of
the executable reduce. The choice reduce above is also the default used if
REDUCE is not specified at all. There are rather rigorous formal restrictions on
the entries in configuration files:

• A valid line either starts with a breduce keyword, such as the 3 lines
above, or contains exclusively whitespace, or starts with the comment
sign ’%’.

• In keyword lines, there must not be any whitespace at the beginning or
at the end or around ’=’. The right hand side of ’=’ must be quoted with
either single or double quotes.1

We now start our first breduce jobs as follows:

breduce fac.breduce

where the extension is optional in the style of LATEX.
Within a few milliseconds we obtain a file LATEX fac.tex containing the table

in Figure 4. In addition, fac.tex contains the name of the working directory
(bredex1 for our example) followed by a dump of fac.breduce. Since breduce
uses the LATEX package “longtable,” which allows have tables spread over several
pages, it may be necessary to process fac.tex several times until the table is
properly arranged. The same holds for this manual. We are going to discuss and
considerably improve the content of the result column of the table in Figure 4
in the next section.

In addition to fac.tex breduce creates a directory fac/, which contains
log files instance1-0.log, . . . , instance10-0.log of the 10 reduce runs. We
are going to discuss the purpose of the appended ’-0’ later on in Section 5.

4 Processing Results

The result column in Figure certainly looks a bit disappointing: It contains the
raw Lisp representations of the results, which have actually been obtained in the
algebraic mode. Moreover, these Lisp representations are processed with LATEX,
which would cause problems whenever they happen to contain special LATEX
symbols. Finally, it is clear that the output of the full result would soon exceed
the space available in a table when factorizing only slightly larger numbers.

1Technically, breduce passes the keyword lines to eval in a Bash. Readers who do not
understand what this means or feel they do not fully understand the possible consequences
of this are strongly recommended to exclusively use single quotes! For advanced users the
careful use of double quotes provides some hook to add information from the OS level.

2



sturm using reduce on lennier.local (i386 Darwin)

start of job on Tue Jan 1 10:32:03 CET 2008

instance result time (ms)

1 (list 1 1) 0

2 (list 2 1) 0

3 (list 3 1) 0

4 (list 2 2) 0

5 (list 5 1) 0

6 (list 2 1)(list 3 1) 0

7 (list 7 1) 0

8 (list 2 3) 0

9 (list 3 2) 0

10 (list 2 1)(list 5 1) 0

end of job on Tue Jan 1 10:32:03 CET 2008

Figure 1: fac.tex

To address all these issues, breduce provides an optional keyword process-
results. For instance

processresults=’breduce_verbatim’

Puts the result into a LATEX verbatim environment such that it may con-
tain arbitrary characters. Another nice choice for small mathematical results
is breduce tex, which uses the reduce package tri [ASW89] for producing
LATEX-formatted output. For factorizing larger numbers in our examples the
user might want to use length for obtaining the number of different factors.

Generally, with large results one can provide a self-written procedure for an-
alyzing the results and outputting suitable LATEX source code. The specification
for such a procedure is as follows:

• It is called in the algebraic mode with the result of the application of the
specified command as its only argument.

• It returns a either string, which is suitable to be processed by LATEX, or
an algebraic mode list of such strings. With the second variant all strings
in the list are successively output.

We are going to see in Sections 6 and 10 where such self-written procedure can
possibly be placed.

breduce itself provides one such function: breduce processformula ana-
lyzes results of redlog [DS97] quantifier elimination rlqe. If the result is “true”
or “false,” then this is printed. Otherwise, if all quantifiers have been success-
fully eliminated there is “>” output, else “⊥.” These symbols are followed by
“(〈k〉q/〈n〉at)” giving the numbers 〈k〉 of quantifiers and of atomic formulas 〈n〉
contained in the result.

3



5 Switches

The systematic evaluation of switches was one major motivation for the de-
velopment of breduce: With computer algebra software developers are often
faced with design alternatives where it is not at all clear which choice is the
best one. It is a helpful technique to introduce at least temporarily reduce
switches which allow to interactively choose between the options. This allows
to experiment with the options and to experimentally adjust the switches to
default settings that deliver satisfactory performance and quality of results for
most input data. At a later stage, there are usually some switches completely
removed while others remain in order to allow to adapt the software to certain
special input data which benefits from alternative settings.

The idea is now to use breduce in this development process for systemati-
cally evaluating the effect of all possible combinations of certain switches.

For illustration, we use two switches. The switch nopowers is off by default.
When on, multiple factors are collected in one flat list rather than building a
pair from each factor and its multiplicity. The switch rounded toggles the use of
fixed-precision floating point numbers, which does not have any relevant effect
on the computation considered here but illustrates the treatment of multiple
switches. The following fac2.breduce serves also as an example for the result
processing option breduce tex discussed in the previous section:

REDUCE=’reduce’
seriesinstances=’7 8 9 10’
switches=’nopowers rounded’
command=’factorize’
processresult=’breduce_tex’

The table obtained in fac2.tex is displayed in Figure 2.
In the directory fac2/ we obtain reduce log files named instance1-0, . . . ,

instance1-3, instance2-0, . . . , instance5-3. Notice that switch settings are
arranged in such a way that they correspond to the binary expansion of the
appended number “-<n>”.

6 Packages and Initcommands

The keyword packages contains a whitespace-separated list of packages to be
loaded. Here is an example:

packages=’groebner groebnr2’

The keyword initcommands takes reduce commands, which are executed right
after the packages are loaded, as for instance

initcommands=’on gc,gsugar; in "my.red"; torder lex;’

Notice that here the switches are simply switched on in contrast to being sys-
tematically tested as with the switch keyword discussed in the previous section.
It may in fact make sense to switch on gc in order to obtain corresponding in-
formation from the log files. The file my.red could provide suitable procedures
for processresult as discussed in Section 4.

4



sturm using reduce on lennier.local (i386 Darwin)

start of job on Thu Jan 3 18:14:47 CET 2008

instance nopowers rounded result time (ms)

7 ◦ ◦ {{7, 1}} 0
7 ◦ • {{7, 1}} 0
7 • ◦ {7} 0
7 • • {7} 0

8 ◦ ◦ {{2, 3}} 0
8 ◦ • {{2, 3}} 0
8 • ◦ {2, 2, 2} 0
8 • • {2, 2, 2} 0

9 ◦ ◦ {{3, 2}} 0
9 ◦ • {{3, 2}} 0
9 • ◦ {3, 3} 0
9 • • {3, 3} 0

10 ◦ ◦ {{2, 1}, {5, 1}} 0
10 ◦ • {{2, 1}, {5, 1}} 0
10 • ◦ {2, 5} 0
10 • • {2, 5} 0

end of job on Thu Jan 3 18:14:49 CET 2008

Figure 2: fac2.tex

In contrast to all other keywords, the content of initcommands is not a
whitespace-separated list. Instead it has to be specified in such a way that it
can be literally pasted into reduce.

7 Commands

In this section we want to discuss in more detail the keyword command, which
we had introduced already in Section 3.

To start with, we can specify a list of procedure names as for instance

commands=’factorize factorial’

which is interpreted as a nested function call factorize(factorial(...)).
The same specification holds for processresult. There is a subtle point about
whether to include a procedure into command or into processresult: The time
measurement given in the last column of the generated LATEX include all proce-
dures in command but not those in processresult. In order to obtain precise
timings for the computations, the procedures in command are executed in re-
duce with a trailing ’$’ such that the timings do not include any printing times.
Users explicitly interested in including printing times would add write as the
leftmost procedure in command.

There is one apparent limitation of the approach: The rightmost proce-
dure in commands and thus the entire chain of nested procedure calls specified
by commands must establish a unary function. This can, however, easily be

5



worked around as follows: Imagine we actually want to work with a binary
myproc(x,y). Then we would provide an additional procedure

algebraic procedure myproc_nospread(l);
myproc(first l,second l);

In the configuration file we would use this as follows:

commands=’myproc myproc_nospread’

Consequently, for each instance of a series the two arguments for myproc have
to be provided in two-element algebraic mode lists. This approach straight-
forwardly generalizes to arbitrary numbers of arguments. reduce provides
nth(<l>,<n>) for obtaining the <n>-th element of a list <l>.

Recall the discussion on the systematic evaluation of switches at the begin-
ning of Section 5. One would obviously like to similarly compare and evaluate
alternative implementations myfun1 and myfun2 of some algorithm. For this
one would introduce, say in a file myfun.red, corresponding switches and a
procedure testing these switches:

switch use_myfun2;

algebraic procedure myfun0(x);
if lisp !*use_myfun2 then myfun2 x else myfun1 x;

A suitable configuration file myfun.breduce would then contain

initcommands=’in "myfun.red";’
switches=’use_myfun2’
command=’myfun0’

8 Random

Let us determine the number of (different) factors of some not too small random
numbers. For this purpose we write the following configuration file fac3a.breduce:

switches=’nopowers’
seriesinstances=’random(10^37) random(10^38) random(10^39)’
command=’factorize’
processresult=’length’

The reduce procedure random(<n>) returns a random number between 0 and
<n>. It is clear that for off nopowers the length of the list obtained from
factorize is the number of different factors while for on nopowers we obtain
the number of factors counting multiplicities. Since the output of length is
simply a number we need not any processresult command. Looking at the
obtained fac3.tex in Figure 3 we observe two things about our randomly gen-
erated numbers:

1. In each instance we obtain for both switch settings the same random
number although these have been generated in different reduce sessions.

2. Comparing the random numbers of different sizes obtained in the various
instances they turn out to be all very similar.

6



We are going to explain the situation without going into technical details: Since
every single line in out table has been computed in a fresh reduce session, we
have started every time with a random generator that has been freshly initialized
in the very same way. To avoid identities between random numbers of the same
size and the observed similarities for different sizes, we must explicitly initialize
the random generator. breduce offers four alternative styles of initialization.
They can be specified via the keyword random:

(a) random=’breduce_instance’

(b) random=’breduce_every’

(c) random=’breduce_instance_abs’

(d) random=’breduce_every_abs’

breduce instance uses the number of the current instance for initialization.
Recall that instances are by definition the entries in seriesinstances. When
trying all possible combinations of switches, these belong to the same instance,
and would thus generate the same random numbers. This is a good choice for
our example considered here. The result is displayed in Figure 4.

breduce every initializes with the sum of the instance number and the dec-
imal representation of the current switch setting. This results in a different
initialization for every single row of the table as displayed in Figure 5. Note,
however, that we are then not testing the switch combination for an instance
on the same input data, which we probably want in most situations.

With both breduce instance and breduce every we still observe that there
is the essentially same sequence of random numbers used every time. Since this
might not really feel like random to some users there are breduce instance all
and breduce every all. These are variants of the discussed options, which
add for initialization also the wall clock time and date. Technically, it uses the
number of seconds since the epoch in the sense of Unix (00:00:00 UTC, January
1, 1970).

In order to make also such breduce jobs reproducible, the number of sec-
onds used is dumped into the LATEX output after the configuration file using the
keyword epoch. When including this dumped epoch line into the configuration
file, its value will be used instead of the real time and date and thus reproduce
the result of the considered breduce job.

9 Limiting the Computation Time

10 Instance Files

11 Signal Handling

12 Keyword Summary

command

headline

7



sturm using reduce on lennier.local (i386 Darwin)

start of job on Fri Jan 4 18:47:16 CET 2008

instance nopowers result time (ms)

1870895791191171734284970352061524775 ◦ 2 20
1870895791191171734284970352061524775 • 3 20

91870895791191171734284970352061524775 ◦ 4 80
91870895791191171734284970352061524775 • 5 80

891870895791191171734284970352061524775 ◦ 6 20
891870895791191171734284970352061524775 • 7 20

end of job on Fri Jan 4 18:47:16 CET 2008

Figure 3: fac3.tex

sturm using reduce on lennier.local (i386 Darwin)
start of job on Sat Jan 5 09:30:14 CET 2008

instance nopowers result time (ms)

1870895791191171734284970352061524775 ◦ 2 20
1870895791191171734284970352061524775 • 3 20

80834363874062020393350577869448966607 ◦ 2 870
80834363874062020393350577869448966607 • 2 870

469797831956933869052426185386836408439 ◦ 4 110
469797831956933869052426185386836408439 • 6 110

end of job on Sat Jan 5 09:30:18 CET 2008

Figure 4: fac3a.tex

sturm using reduce on lennier.local (i386 Darwin)

start of job on Sat Jan 5 09:33:09 CET 2008

instance nopowers result time (ms)

1870895791191171734284970352061524775 ◦ 2 20
834363874062020393350577869448966607 • 6 12080

80834363874062020393350577869448966607 ◦ 2 870
69797831956933869052426185386836408439 • 5 30

469797831956933869052426185386836408439 ◦ 4 110
258761300039804717711491792904223850271 • 5 5180

end of job on Sat Jan 5 09:33:28 CET 2008

Figure 5: fac3b.tex

8



initcommands

killtime

packages

processresult

random

REDUCE

seriesinstances

seriesfilebasename

seriesprintname

switches

References

[ASW89] Werner Antweiler, Andreas Strotmann, and Volker Winkelmann. A
TEX-REDUCE-Interface. ACM SIGSAM Bulletin, 23(2):26–33, April
1989.

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra
meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

[Hea04] Anthony C. Hearn. Reduce User’s Manual for Version 3.8. Santa
Monica, CA, February 2004. http://reduce-algebra.com/.

9


