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1 Purpose

Procedures of this package perform computationally expensive and non-trivial computations with
polynomials of products of 3-component vectors. The individual procedures can be grouped into
the following categories:

• initialization of the package,

• generation of scalar vector expressions according to a multiple weighting scheme where
each vector has multiple weights,

• conversions of scalar vector expressions between different representations,

• the computation of Poisson brackets between vector expressions,

• a computation determining whether a given scalar vector expression is functionally de-
pending on a list of other scalar vector expressions.

A possible application of these procedures is the classification of integrable ‘vectorial’ Hamiltoni-
ans, the study whether obtained expressions are functionally independent of known expressions
and the compactification of results for publication.

These routines were designed and implemented to support the classification of integrable
Hamiltonians. Examples are chosen from this application. More details are given in [1].

2 Notation

The chosen conventions aim to display large vector expressions as compact as possible. All
vectors have 3 components and are represented by a single letter, like A or B. In this manual
we use capital letters in mathematical formulas and lower case letters for REDUCE input and
output. REDUCE is not case sensitive but output shows in lower case letters. Vector components
have an extra digit 1, 2 or 3, like A2, B3. Products of vectors are represented by a single identifier
where the following convention is used: ABCD... stands for (A , B × (C × (D × ...))) where
( , ) denotes the scalar vector product and × the skew symmetric vector product. For example,
we have AB = (A,B) and ABC = (A,B × C). In the following we distinguish between three
forms of scalar vector expressions:
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- the component form involving only the components A1, A2, A3, B1, ...,

- the standard vector form involving only scalar products AB (= (A,B)) and triple prod-
ucts ABC (= (A,B × C)),

- the extended vector form involving any product ABCD....

Because of the commutativity of the scalar product (A,B) = (B,A) there seem to be two
identifiers AB and BA suited to represent the same product. Similarly for triple products we
have the relation ABC = BCA = CAB = −ACB = −CBA = −BAC. In order to have
an unambiguous notation such that vanishing rational expressions simplify to zero we adopt
then convention that for scalar products and triple products only identifiers are used in which
letters are sorted alphabetically. For example, the program uses AB,AV,ABV,BUV but not
BA,VA,BVA,VBU. In order to simplify manual input one can assign expressions using identifiers,
like BA,BUA, and afterwards convert them into proper notation using the procedure e2s (see
below or the beginning of the file v3tools.tst).

In order to use non-vectorial parameters, like ALPHA or BETA2 every non-vectorial param-
eter is preceded by !&, e.g. one would input !&alpha or !&beta2.

3 Initialization

Scalar and triple products of 3-component vectors satisfy identities, for example, the four vectors
A,B, U, V satisfy

0 = AB BUV − ABU BV + ABV BU − AUV BB.

Therefore, scalar vector expressions, i.e. polynomials of scalar vector products do usually not
have a unique form. They can be re-written using these identities, for example, in order to
minimize the number of terms of the polynomial or to bring the expression into a canonical
form. Sometimes computations have to be done modulo these identities, more precisely, mod-
ulo a Gröbner basis of these identities. The computation of the identities and their Gröbner
basis has to be done only once with the procedure vinit which initializes the global variables
v ,gbase ,heads . The procedure vinit takes as argument the list of all vectors that occur in
the computation, for example, vinit({u,v,w,z}). In the default case of vectors a,b,u,v the
global variables v ,gbase ,heads are already assigned and vinit does not have to be called
initially. But if some of the vectors satisfy a special relation, like AB = 0 then this relations
should be assigned (like ab:=0;) and vinit should be run afterwards. Here an overview of the
three global variables:

v : a list of vectors involved in all the computations. The global variable v is needed in the
procedure poisson v. The default value is v ={a,b,u,v} .

gbase : a list of polynomials which are a Gröbner basis for all identities between scalar products
AB and triple products ABC of any vectors in the list v .

heads : a list of leading terms of the polynomials in gbase .

4 Main Routines

Which routines work only for homogeneous vectorial expressions and which for any vectorial
expressions?
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vinit : initializes all three global variables vl , gbase , heads for a given list of vectors. This
procedure is not necessary if the list of vectors is A,B,U,V. The procedure is necessary if
some of the vectors satisfy extra conditions, like AB=0. Example:

vinit({a,b,c,d});

e2s : converts a vectorial polynomial from extended vector form into standard vector form by
replacing products ABCD... through scalar and triple products. Example:

e2s(buuav); --> abv*uu - auv*bu

It is also useful to convert from standard vector form into standard vector form if one wants
to sort factors in scalar and triple products lexicographically. This is useful for working
with this package on expressions that have been generated outside this package and that
do not obey the lexicographical ordering of factors. Example:

e2s(avb*uu + uva*bu); --> - abv*uu + auv*bu

v2c : converts an expression from any vector form (extended or standard) into component form.
Example:

v2c(abu); --> a1*b2*u3-a1*b3*u2-a2*b1*u3+a2*b3*u1+a3*b1*u2-a3*b2*u1

c2sl : converts an expression from component form into standard vector form. The resulting
vector expression is returned partitioned as a list of sublists. Each sublist contains ex-
pressions with the same multiplicity of each vector (the same homogeneity). The first
expression of each list is the vector equivalent of the corresponding input terms in compo-
nent form. All other expressions in each sublist are identically vanishing vector expressions,
i.e. vector identities with the same multiplicity as the first expression in each sublist. That
means, the second, third,... expression in each sublist multiplied with a constant could be
added to the first expression of each sublist in order to change its form but not its value.
Example:

c2sl(a1*b2*u3 - a1*b3*u2 - a2*b1*u3 + a2*b3*u1 + a3*b1*u2 - a3*b2*u1 +

a1*b1*b2*u3*v1 - a1*b1*b2*u1*v3 + a1*b1*b3*u1*v2 - a1*b1*b3*u2*v1 -

a1*b2**2*u2*v3 + a1*b2**2*u3*v2 - a1*b3**2*u2*v3 + a1*b3**2*u3*v2 +

a2*b1**2*u1*v3 - a2*b1**2*u3*v1 + a2*b1*b2*u2*v3 - a2*b1*b2*u3*v2 +

a2*b2*b3*u1*v2 - a2*b2*b3*u2*v1 + a2*b3**2*u1*v3 - a2*b3**2*u3*v1 -

a3*b1**2*u1*v2 + a3*b1**2*u2*v1 + a3*b1*b3*u2*v3 - a3*b1*b3*u3*v2 -

a3*b2**2*u1*v2 + a3*b2**2*u2*v1 - a3*b2*b3*u1*v3 + a3*b2*b3*u3*v1 );

--> {{abu},{abu*bv - abv*bu, ab*buv - abu*bv + abv*bu - auv*bb}}

The input expression is equal to the sum of the first expressions of all sublists, i.e. equal
ABU + ABU BV - ABV BU. The second expression of the second sublist is an identity,
i.e. 0=AB BUV - ABU BV + ABV BU - AUV BB, where each vector occurs in each term
equally often as in each term of the first expression in the second sublist.

c2s : is equivalent to c2sl with the difference that all expressions of all sublists are added up
with all identity expressions obtaining a coefficient !&c1, !&c2,.... Example:
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c2s( same input as for c2sl );

--> abu + abu*bv - abv*bu + !&c1*(ab*buv - abu*bv + abv*bu - auv*bb)

s2s : generates and uses vector identities to reduce the length of an expression in standard
vector form. Example:

s2s( - abu*vv + abv*uv + av*buv); --> auv*bv

s2e : like s2s but also uses identities involving products ABCD.. and thus transforms standard
vector form into extended vector form. Example:

s2e(abv*uu - auv*bu); --> buuav

In its current form it only uses products that involve all the vectors involved in each term
of the standard vector form. In the above example it would not try to use products with
4 factors but only with 5 factors, like buuav.

genpro : generation of all scalar and triple products for a given vector list. Example:

genpro({a,b,u,v}); --> {aa,ab,au,av,bb,bu,bv,uu,uv,vv,abu,abv,auv,buv}

genpro wg : similar to genpro with the difference that each vector is accompanied by a list
of weights and the resulting scalar and triple products also come with a list of weights.
Example:

genpro_wg({{a,1,0,0},{b,0,1,0},{u,0,0,1},{v,1,0,1}});

--> {{aa,2,0,0},{ab,1,1,0},{au,1,0,1},{av,2,0,1},{bb,0,2,0},

{bu,0,1,1},{bv,1,1,1},{uu,0,0,2},{uv,1,0,2},{vv,2,0,2},

{abu,1,1,1},{abv,2,1,1},{auv,2,0,2},{buv,1,1,2}}

poisson c : computes the poisson bracket of two arbitrary expressions. This procedure needs as
input the Poisson structure matrix which we call struc cons below. This is encoded as a
list of lists, specifying all non-vanishing Poisson brackets between any two dynamical vari-
ables, here u1,u2,u3,v1,v2,v3. For example, the first sublist {u1,u2,u3} of struc cons

below, encodes the Poisson bracket relation {U1, U2} = −{U2, U1} = U3. Poisson brack-
ets associated to other Lie-algebras are appended to the file v3tools.red. The structure
matrix below encodes the Lie-Poisson bracket e(3) for !&kap=0, so(4) for !&kap=1 and
so(3, 1) for !&kap=-1. poisson c needs all of its arguments in component form. Example:

ham:=v2c(ab*uu-2*au*bu+buv)$

fi :=v2c(bu*(2*auv-!&kap*uu+vv))$

!&kap:=-a1**2-a2**2-a3**2$

struc_cons:={{u1,u2, u3}, {u2,u3, u1}, {u3,u1, u2},

{u1,v2, v3}, {u2,v3, v1}, {u3,v1, v2},

{u1,v3,-v2}, {u2,v1,-v3}, {u3,v2,-v1},

{v1,v2, !&kap*u3}, {v2,v3, !&kap*u1}, {v3,v1, !&kap*u2}}$

poisson_c(ham,fi,struc_cons); --> 0

The example shows that fi is a first integral of ham under the assumption !&kap = - aa.
Note that !&kap could not have been expressed in terms of components of vectors before
assigning fi as then the argument to v2c would not be a purely vectorial expression.
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poisson v : computes the Poisson bracket for two vector expressions. It uses the global variable
gbase . When poisson v is called the first time it computes the Poisson bracket between
any scalar and triple product once using the procedure poisson c and stores these elemen-
tary Poisson brackets under the global operator poi . Therefore, the third argument to
poisson v (the Poisson structure matrix) has to be given in component form. Example:
Compare the following with the example for the call of poisson c.

ham:=ab*uu-2*au*bu+buv$

fi :=bu*(2*auv-!&kap*uu+vv)$

!&kap:=-a1**2-a2**2-a3**2$

struc_cons:={{u1,u2, u3}, {u2,u3, u1}, {u3,u1, u2},

{u1,v2, v3}, {u2,v3, v1}, {u3,v1, v2},

{u1,v3,-v2}, {u2,v1,-v3}, {u3,v2,-v1},

{v1,v2, !&kap*u3}, {v2,v3, !&kap*u1}, {v3,v1, !&kap*u2}}$

!&kap:=-aa$

poisson_v(ham,fi,struc_cons); --> 0

When calling poisson v a second time the computation proceeds much faster as the Pois-
son brackets between scalar and triple products had been stored with the operator poi .
Note that at first !&kap is expressed in component form to have struc cons in component
form but afterwards !&kap is expressed in vector form to have ham,fi in vector form at
the time of calling poisson v.

gfi : generates a vector expression with unknown coefficients according to a specific list of
weights {w1, w2, ...}. The number of weights is arbitrary but fixed. For example, the
vector V could be given weights {w1, w2, w3} = {1, 0, 1} which will be input as {v,1,0,1}
in the second argument to gfi. In the following example vectors A,B, U, V are each given
3 weights {w1, w2, w3} and the most general polynomial is generated where the sum of all
{w1, w2, w3} values of all vectors in each term are equal {2, 1, 3}. Example:

gfi({2,1,3},

{{a,1,0,0},{b,0,1,0},{u,0,0,1},{v,1,0,1}},

{aa, ab, bb, bu, uv, -aa*uu + vv, ab*uu - 2*au*bu + buv},

heads_

);

--> {&r1*abu*uv + &r2*abv*uu + &r3*bv*uv + &r4*auv*bu + &r5*bu*vv

2

+ &r6*au *bu + &r7*ab*au*uu,

&r7,&r6,&r5,&r4,&r3,&r2,&r1}

The meaning of the parameters:

1. The first parameter of gfi is a list of the total weights of each term in the generated
polynomial.

2. The second parameter is the list of vectors to be used for generating the expression,
each comes with its list of weight values, like {a,1,0,0}.

3. The third parameter is a list of homogeneous vector expressions. The polynomial
returned by gfi must not include any expression that is functionally dependent on
the expressions in this list. In other words, from the most general polynomial with
proper homogeneity that is generated at first within gfi terms are dropped so that it
is not possible to choose in the remaining polynomial the undetermined coefficients
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!&r1,!&r2,... such that an expression results which is functionally dependent only
on the expressions of the third parameter list. In this example we want to formulate
an ansatz for a first integral that is functionally independent of the expressions aa,
ab, bb (because A,B are assumed to be constant vectors and U, V to be dynami-
cal vectors), bu (a known first integral), uv, -aa*uu + vv (two Casimirs, i.e. first
integrals) and (ab*uu - 2*au*bu + buv) which is the Hamiltonian. The third pa-
rameter prevents the generation of the term bu*aa*uu which also has weights {2, 1, 3}
(as b has weights {0, 1, 0}, u has weights {0, 0, 1} and a has weights {1, 0, 0}). The
term bu*aa*uu is dropped because the resulting polynomial would otherwise contain
the functionally dependent expression bu*(-aa*uu+vv).

4. The fourth parameter is the list of leading terms of the Gröbner basis of identities
between the vectors. The resulting polynomial contains only terms which are not
a multiple of any one of the terms in this list. By excluding terms which are not
multiples of leading terms of identities in the Gröbner basis one defines a canonical
form which vanishes only if all terms vanish.

The result of gfi is a list. Its first element is the most general polynomial that has the
required properties. The list of undetermined coefficients !&r.. is appended.

fnc dep : investigates whether a given vectorial expression (the first parameter) is functionally
dependent on the elements of a list (the second parameter). The third parameter is the
list of occurring vectors with their weights. In the following example it is to be checked
whether the first integral finew is new or merely the known one fiold in disguised form.
Example:

ham:=ab*uu-1/2*au*bu+buv$

fiold:=bu**2*((bu*aa-ab*au)**2*uu+2*(bu*aa-ab*au)*(bu*auv-buv*au)

-vv*abu**2-(bu*av-bv*au)**2-uu*vv*ab**2+aa*uu*vv*bb)$

finew:=( - 16*aa**2*bu**4*uu + 96*aa*ab**2*bb*uu**3 -

96*aa*ab*au*bb*bu*uu**2 + 32*aa*ab*au*bu**3*uu + 32*aa*abu*bu**3*uv -

32*aa*abv*bu**3*uu + 24*aa*au**2*bb*bu **2*uu - 16*aa*bu**4*vv +

56*ab**4*uu**3 - 84*ab**3*au*bu*uu**2 + 168*ab**2*abu* bv*uu**2 -

168*ab**2*abv*bu*uu**2 + 26*ab**2*au**2*bu**2*uu + 360*ab**2*auv*bb*

uu**2 + 168*ab**2*bb*uu**2*vv - 184*ab**2*bb*uu*uv**2 -

168*ab**2*bu**2*uu*vv + 336*ab**2*bu*bv*uu*uv - 168*ab**2*bv**2*uu**2

+ 264*ab*abu*au*bb*uu*uv - 32*ab* abu*au*bu**2*uv -

168*ab*abu*au*bu*bv*uu + 192*ab*abu*av*bb*uu**2 - 456*ab*abv*

au*bb*uu**2 + 200*ab*abv*au*bu**2*uu - 7*ab*au**3*bu**3 -

180*ab*au*bb*bu*uu*vv + 44*ab*au*bb*bu*uv**2 + 192*ab*au*bb*bv*uu*uv +

116*ab*au*bu**3*vv - 168*ab*au* bu**2*bv*uv + 84*ab*au*bu*bv**2*uu +

192*ab*av*bb*bu*uu*uv - 192*ab*av*bb*bv*uu **2 -

264*abu*au**2*bb*bv*uu + 42*abu*au**2*bu**2*bv - 96*abu*au*av*bb*bu*uu

+ 96*abu*bb*bu*uv*vv - 136*abu*bb*bv*uu*vv + 24*abu*bb*bv*uv**2 -

56*abu*bu**2*bv* vv + 112*abu*bu*bv**2*uv - 56*abu*bv**3*uu +

360*abv*au**2*bb*bu*uu - 42*abv*au **2*bu**3 + 40*abv*bb*bu*uu*vv -

24*abv*bb*bu*uv**2 + 56*abv*bu**3*vv - 112*abv* bu**2*bv*uv +

56*abv*bu*bv**2*uu - 264*au**2*auv*bb**2*uu + 42*au**2*auv*bb*bu** 2 +

96*au**2*bb**2*uu*vv - 40*au**2*bb*bu**2*vv - 96*au**2*bb*bv**2*uu +

16*au** 2*bu**2*bv**2 - 192*au*av*bb**2*uu*uv + 192*au*av*bb*bu*bv*uu

- 32*au*av*bu**3* bv - 136*auv*bb**2*uu*vv + 24*auv*bb**2*uv**2 +

40*auv*bb*bu**2*vv + 112*auv*bb* bu*bv*uv - 56*auv*bb*bv**2*uu +
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96*av**2*bb**2*uu**2 - 96*av**2*bb*bu**2*uu + 16 *av**2*bu**4 -

96*bb**2*uu*vv**2 + 96*bb**2*uv**2*vv + 96*bb*bu**2*vv**2 - 192*

bb*bu*bv*uv*vv + 96*bb*bv**2*uu*vv)/8$

if fnc_dep(finew,{aa,ab,bb,bu,uv,uu*aa-vv,ham,fiold},

{{A,1,0,0},{B,0,1,0},{U,0,0,1},{V,1,0,1}}) then

write"This is a known first integral." else

write"This is a new first integral!"$

-->

The expression in question is functionally dependent on

the list of expressions {p_1,p_2,...} in the following way:

2 3 2

10*p_2*p_3*p_5 *p_7 + 7*p_2*p_7 + 12*p_3*p_6*p_7 - 2*p_8

This is a known first integral.

5 Complete list of global variables

Type name Purpose
algebraic v , gbase , heads needed for poisson v(), gfi(), fnc dep()

!&c1, !&c2, ... constant coefficients introduced by c2s()

symbolic fino , wgths used internally in gen()

!&r1, !&r2, ... constant coefficients introduced by gfi()

tr vec global tracing flag
operator poi stores Poisson brackets between

scalar and triple products

6 Requirements

LOAD_PACKAGE crack, v3tools$
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