
REDUCE-MathML Interface

Luis Alvarez-Sobreviela
alvarez@zib.de

Konrad–Zuse–Zentrum für Informationstechnik Berlin
Takustraße 7

D-14195 Berlin-Dahlem

August 9, 1999

1 Introduction

MathML is intended to facilitate the use and re-use of mathematical and scien-
tific content on the Web, and for other applications such as computer algebra
systems. For this reason we believe MathML is an important step for the scien-
tific community considering the widespread use of the Internet. We found neces-
sary to include REDUCE in this trend, and developed the MathML-REDUCE
interface.

The MathML interface for REDUCE provides an easy to use series of com-
mands, allowing it to evaluate and output MathML. This manual is therefore
intended to give the user a good guideline on how to make of it a proper use.

The principal features of this package can be resumed as:

• Evaluation of MathML code. Allows REDUCE to parse MathML expres-
sions and evaluate them.

• Generation of MathML compliant code. Provides the printing of RE-
DUCE expressions in MathML source code, to be used directly in web
page production.

• Generation of MathML code surrounded by HTML <embed></embed>
tags. This is useful for directly including MathML into a webpage. It
can then easily be rendered on any browser with the IBM Tech Explorer
plug-in 1.

We assume that the reader is familiar with MathML 1.0. If not, the specifi-
cation. is available at:

http://www.w3.org/Math/

1Currently available at http://www.software.ibm.com/network/techexplorer/

1

2 Getting Started

2.1 Loading

The MathML-REDUCE interface package is under the name mathml, and so is
loaded by supplying load mathml;.

2.2 Switches

There are three switches which can be used alternatively and incrementally.
These are mathml, web and both. There use can be described as follows:

mathml: All output will be printed in MathML.

both: All output will be printed in both MathML and normal REDUCE.

web: All output will be printed within an HTML < embed > tag. This is for
direct use in an HTML web page when using IBM Tech Explorer.

MathML has often been said to be too verbose. If both is on, an easy
interpretation of the results is possible, improving MathML readability.

2.3 Entering MathML

The MathML-REDUCE interface gives the user various ways of providing input.
This can be done via a file containing MathML or by writing MathML directly
in the prompt.

2.3.1 Reading MathML from a File: MML

When reading from a file the command mml is used. mml takes as argument
the name of the file containing the MathML.

mml(FILE:string):expression

Example: As long as the file given contains valid MathML, no errors should
be produced.

1: mml "ex.mml";

2.3.2 Reading MathML from Prompt: PARSEML

By using the function parseml it is possible to introduce a series of valid mathml
tokens to the prompt. parseml takes no arguments, although once it is called
it will prompt you to enter mathml tags starting with <mathml> and ending
with </mathml>. It then returns an expression resulting from evaluating the
input.

2

Example: Here is an extract of a REDUCE session where parseml() is used:

2: parseml();

2: <math>

2: <apply><plus/>

2: <cn>3</cn>

2: <cn>5</cn>

2: </apply>

2: </math>

8

3:

If for some reason you do not want to continue typing in at the prompt, and
cancel what has already been typed, it is possible to exit by calling control C or
control D.

Although it is simpler to edit a file and then use mml, we still added parseml
for completeness.

3 The Evaluation of MathML

MathML is evaluated by the interface always before outputting any results. Just
in the same way as REDUCE normally does. The program works in the same
way as the algebraic mode. Undefined variables remain undefined, and it is
possible to use all normal REDUCE switches and packages.

Example: The following MathML:

<math>

<reln><gt/>

<ci>x</ci>

<ci>y</ci>

</reln>

</math>

will evaluate to gt(x,y). This only states that x is greater than y.
The interesting characteristic, is that we can set the undefined values of x and
y.
Suppose we enter the following:

5: x:=3; y:=2;

x := 3

3

y := 2

If we once again enter and evaluate the above piece of MathML we will have as
result:

t

because it is true that 3 is greater than 2. It is important to note that it is
also possible to set only one of the two variables x or y above, say y:=4. The
expression will then not evaluate completely, and we will have:

gt(x,4)

When one of the switches is on, the MathML output will be:

<math>

<reln><gt/>

<ci>x</ci>

<cn type="integer">4</cn>

</reln>

</math>

Hence, it is possible when dealing with a MathML formula representation in
which there are a set of undefined variables to set each variable to the desired
value and evaluate it. Let us consider a second example to make sure everything
is clear.

Example: Let the file ex.mml contain the following mathml:

<math>

<apply><int/>

<bvar>

<ci>x</ci>

</bvar>

<apply><fn><ci>F</ci><fn>

<ci>x</ci>

</apply>

</apply>

</math>

If we do the following:

1: mml "ex.mml";

This is what we get:

4

int(f(x),x);

It is clear that this has remained unevaluated. We can now set the function
f(x) as follows:

for all x let f(x)=2*x**2;

If we then enter ’mml "ex.mml"’ once again, we will have the following result:

2∗x3

3

Hence the MathML-REDUCE interface allows the user to set a value to a vari-
able in order to manipulate the evaluation of the MathML, without needing to
edit the MathML itself.

3.1 Using Boolean Values

Boolean values are not defined in MathML, despite their importance in RE-
DUCE. To get around this problem, we can set a variable’s value to a boolean
value, and when evaluating, the MathML-REDUCE interface will use the boolean
value of the variable.
Suppose we want to evaluate the following expression:

and(t,nil);

Then all we do, is we create a file with the following MathML:

<mathml>
<apply><and/>
<ci> a </ci>
<ci> b </ci>

</apply>
</mathml>

And before evaluating it, we set a to true and b to nil. When evaluating
the MathML, it will produce the same result as the equivalent REDUCE ex-
pression.

4 Interpretation of Error Messages

The MathML-REDUCE interface has a set of error messages which aim to help
the user understand and correct any invalid MathML. Because there can exist
many different causes of errors, such error messages should be considered merely
as advice. Here we shall consider the most important error messages.

5

Missing tag: Many MathML tags go by pairs, such as <apply></apply>,
<reln></reln>, <ci></ci>, etc. . . . In the case where the ending tag is
missed out, or misspelled, it is very probable that an error of this type will be
thrown.

Ambiguous or Erroneous Use of <apply> This error message defines
an undefined error. When this error message appears, it is not very clear to
the interface where exactly lies the error. Probable causes are a misuse of the
<apply></apply> tags, or a mispelling of the tag preceding the <apply>.
However, other types of errors may cause this error message to appear.

Tags following an <apply> tag may be misspelled without causing an error
message, but they will be considered as operators by REDUCE and therefore
evaluate to some unexpected expression.

Syntax Errors It is possible that the input MathML is not syntactically cor-
rect. In such a situation, the error will be spotted, and in some cases a solution
might be presented. There are a variety of syntax errors messages, but relying
on their advice might not always be helpful.

Despite the verbose nature of the error messages and their recommended
solutions, we do recommend that in most situations reference to the MathML
specification is made.

5 Limitations of the Interface

Not all aspects of MathML have been perfectly fitted into the interface. There
are still some problems unsolved in the present version of the interface:

• MathML Presentation Markup is not supported. The interface will treat
every presentation tag as an unknown tag, or a REDUCE operator. We
found presentation markup not prioritary when dealing with computer
algebra systems, although in the future, parsing of presentation markup
within content markup shall be supported.

• Certain MathML tags do not play an important role in the REDUCE
environment. Such tags will not evaluate or affect in anyway the interface’s
behaviour. They will be parsed correctly, although their action will be
ignored. These tags are:

1. <interval></interval>

2. <inverse></inverse>

3. <condition></condition>

4. <compose></compose>

5. <ident></ident>

6

6. <forall/>

7. <exists/>

Although <condition></condition> and <interval></interval>
tags are supported when used within the following tags:

1. <int/>

2. <limit/>

3. <sum/>

4. <product/>

• The <declare> construct takes one or two arguments. It sets the first
argument to the value of the second. In the case where the second argu-
ment is a vector or a matrix, an obscure error message is produced. It is
clearly something which must be fixed in the future.

• The program throws an error when it encounters nil between<ci></ci>
tags. It is not possible to use boolean values directly. Please refer to the
above subsection treating this matter.

6 Including MathML into a Webpage

We shall not get into the details of including MathML in the design of a web
page, but it is important for completeness, to give a quick overview. One can
include MathML in two ways:

• By introducing MathML inside $$ tags in any HTML
page.

• By having MathML being embeded inside HTML <embed></embed>
tags.

When one has themathml switch on, MathML is generated inside$$
tags. Browsers such as WebEQ 2can read this type of encoding.

Example:

<html>

<body>

<title>MathML example</title>

<h1>Example of MathML</h1>

The following is MathML directly encoded within this homepage:

2Available at http://www.webeq.com

7

<math>

<apply><int>

<bvar>

<ci>x</ci>

</bvar>

<apply><power/>

<ci>x</ci>

<apply><power/>

<ci>x</ci>

<cn type="integer">2</cn>

</apply>

</apply>

</apply>

</math>

On some browsers such as WebEQ, the MathML is rendered correctly.

</html>

But most people on the web use either Netscape or Microsoft Internet Ex-
plorer, which do not at the moment support complete MathML rendering.

What must be done in cases where Netscape or Microsoft Internet Explorer
are used, is to make available the IBM Tech Explorer Plug-in, and include the
MathML inside the web page surrounded by <embed></embed> tags. This
is easily done with the REDUCE-MathML interface by having the web switch
on. Here is an example of how to do this:

Example

<html>

<body>

<title>MathML example</title>

<h1>Example of MathML</h1>

The following is MathML directly encoded within this homepage:

<EMBED TYPE="text/mathml" MMLDATA="<math><apply><int><bvar><ci>x</ci></bvar>

<apply><power/><ci>x</ci><apply><power/><ci>x</ci><cn type="integer">

2 </cn></apply></apply></apply></math>"

HEIGHT=300 WIDTH=200>

8

On all browsers with the Tech Explorer Plug-in, this is rendered

correctly.

</html>

Another way to embed MathML in a web page document is by having a
separate file contain MathML (usually a file with .mml extension) and to embed
it inside a page with the following code:

<EMBED TYPE="text/mathml" src="mathml.mml" HEIGHT=300 WIDTH=200>

7 Examples

We would like to present a series of examples which will illustrate the possibilities
of the interface.

Example 1 Type in the following and observe the resulting expression:

23: on mathml;

24: solve({z=x*a+1},{z,x});

Example 2 Have a file ex2.mml containing the following MathML source
code:

<mathml>
<apply><sum/>

<bvar>
<ci>x</ci>

</bvar>
<apply><fn><ci>F</ci><fn>

<ci>x</ci>
</apply>

</apply>
</mathml>

and type:

mml "ex2.mml"

Example 3 This example illustrates how practical the switch both can be
for interpreting verbose MathML. Introduce the following MathML source into
a file, say ex3.mml

9

<mathml>
<apply><int/>

<bvar>
<ci>x</ci>

</bvar>
<apply><sin/>

<apply><log/>
<ci>x</ci>

</apply>
</apply>

</apply>
</mathml>

then do the following:

2: on both;

3: mml "ml";

8 An overview of how the Interface Works

The interface is primarily built in two parts. A first one which parses and evalu-
ates MathML, and a second one which parses REDUCE’s algebraic expressions
and prints them out in MathML format. Both parts work by recursive parsing,
using Top-Down Recursive Descent parsing with one token look ahead.

The BNF description of the MathML grammar is to be defined informally in
APPENDIX E of the current MathML specification. It is with this document
that we have developed the MathML parser. The MathML parser evaluates
all that is possible and returns a valid REDUCE algebraic expression. When
mathml or both are on, this algebraic expression is fed into the second part
of the program which parses these expressions and transforms them back into
MathML.

The MathML generator parses through the algebraic expression produced
by either REDUCE itself or the MathML parser. It works in a very similar way
as the MathML parser. It is simpler, since no evaluation is involved. All the
generated code is MathML compliant. It is important to note that the MathML
code generator sometimes introduces Presentation Markup tags, and other tags
which are not understood by the MathML parser of the interface3.

3The set of tags not understood by the MathML parser are detailed in section Limitations.

10

