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1 Introduction

1.1 Purpose

The package Crack attempts the solution of an overdetermined system of algebraic, ordinary
or partial differential equations (ODEs/PDEs) with at most polynomial nonlinearities.

Under ‘normal circumstances’ differential equations (DEs) which describe physical processes
are not overdetermined, i.e. the number of DEs matches the number of unknown functions
which are involved. Although Crack may be successful in such cases (e.g. for characteristic
ODE-systems of first order PDEs) this is not the typical application. It is rather the quali-
tative investigations of such differential equations, i.e. the investigation of their infinitesimal
symmetries (with LiePDE,ApplySym) and conservation laws (with Conlaw) which result
in over-determined systems which are the main application area of Crack.

1.2 Interactivity

The package was originally developed to run automatically and effort was taken for the program
to decide which computational steps are to be done next with a choice among integrations,
separations, substitutions and investigation of integrability conditions. It is known from hand
computations that the right sequence of operations with exactly the right equations at the right
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time is often crucial to avoid an explosion of the length of expressions. This statement keeps its
truth for the computerized solution of systems of equations as they become more complex. As
a consequence more and more interactive access has been provided to inspect data, to specify
how to proceed with the computation and how to control it. This allows the human intervention
in critical stages of the computations (see the switch off batch mode below).

1.3 General Structure

A problem consists of a system of equations and a set of inequalities. With each equation are
associated a short name and numerous data, like size, which functions, derivatives and variables
occur but also which investigations have already been done with this equation and which not
in order to avoid unnecessary duplication of work. These data are constantly updated if the
equation is modified in any way.

A set of about 30 modules is available to integrate, substitute, decouple, ... equations. A
complete list can be inspected in interactive mode with the command p2, each operation is
listed with the number it is called. All modules can be called interactively or automatically.
Automatic computation is organized by a priority list of modules (each represented by a num-
ber) where modules are invoked in the order they appear in the priority list, each module trying
to find equations in the system it can be applied to. The priority list can be inspected with
the command p1. If a module is not successful then the next module in the list is tried, if any
one is successful then execution starts again at the beginning of the priority list. {prog list ,
default proc list , full proc list }

Because each module has access to all the data, it is enough to call a module by its number.
For example, the input of the number 2 in interactive mode will start the direct separation
module (see below) to look for a directly separable equation and will split it.

2 Syntax

2.1 The call

Crack is called by

crack({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e. they represent equa-
tions 0 = equ i, which are to be solved for the functions funj as far as possible, thereby
drawing only necessary conclusions and not restricting the general solution.

• The ineqi are algebraic or differential expressions which must not vanish identically for
any solution to be determined, i.e. only such solutions are computed for which none of
the expressions ineqi vanishes identically in all independent variables.

• The dependence of the (scalar) functions funj on independent variables must be defined
beforehand with DEPEND rather than declaring these functions as operators. Their argu-
ments may themselves only be identifiers representing variables, not expressions. Also
other unknown functions not in funj must not be represented as operators but only using
DEPEND.
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• The functions funj and their derivatives may only occur polynomially.

• The vark are further independent variables, which are not already arguments of any of
the funj. If there are none then the fourth argument is the empty list {}, although it
does no harm to include arguments of functions funj.

• The dependence of the equ i on the independent variables and on constants and functions
other than funj is arbitrary.

• Crack can be run in automatic batch mode (by default) or interactively with the switch
OFF BATCH MODE.

2.2 The result

The result is a list of solutions
{sol1, . . .}

where each solution is a list of 4 lists:

{{con1, con2, . . . , conq},
{funa = ex a, funb = ex b, . . . , funp = ex p},
{func, fund, . . . , funr},
{ineq1, ineq2, . . . , ineqs}}

For example, in the case of a linear system, the input consists of at most one solution sol1.
If Crack finds a contradiction as e.g. 0 = 1 then there exists no solution and it returns the

empty list {}. If Crack can factorize algebraically a non-linear equation then factors are set
to zero individually and different sub-cases are studied by Crack calling itself recursively. If
during such a recursive call a contradiction results, then this sub-case will not have a solution
but other sub-cases still may have solutions. The empty list is also returned if no solution exists
which satisfies the inequalities ineqi ̸= 0.

The expressions con i (if there are any), are the remaining necessary and sufficient conditions
for the functions func, . . . , funr in the third list. Those functions can be original functions from
the equations to be solved (of the second argument of the call of Crack) or new functions
or constants which arose from integrations. The dependence of new functions on variables is
declared with DEPEND and to visualize this dependence the algebraic mode function FARGS(funi)
can be used. If there are no con i then all equations are solved and the functions in the third list
are unconstrained. The second list contains equations fun i = ex i where each fun i is an original
function and ex i is the computed expression for fun i. The elements of the fourth list are the
expressions who have been assumed to be unequal zero in the derivation of this solution.

2.3 Automatic vs. interactive

Under normal circumstances one will try to have problems solved automatically by Crack.
An alternative is to input OFF BATCH MODE; before calling Crack and to solve problems inter-
actively. In interactive mode it is possible to

• inspect data, like equations and their properties, unknown functions, variables, identities,
a statistics,

• save, change, add or drop equations,

• add inequalities,
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• inspect and change flags and parameters which govern individual modules as well as their
interplay,

• pick a list of methods to be used out of about 30 different ones, and specify their priorities
and in this way very easily compose an automatic solving strategy,

• or, for more interactive work, to specify how to proceed, i.e. which computational step to
do and how often, like doing

one automatic step,

one specific step,

a number of automatic steps,

a specific step as often as possible or a specified number of times.

To get interactive help one enters h or ?.
Flags and parameters are stored as symbolic fluid variables which means that they can

be accessed by lisp( ... ), like lisp( print :=5 ); before calling Crack. print , for
example, is a measure of the maximal length of expressions to be printed on the screen (the
number of factors in terms). A complete list of flags and parameters is given at the beginning
of the file crinit.red.

One more parameter shall be mentioned, which is the list of modules/procedures called
proc list . In interactive mode this list can be looked at with ‘p’ or be changed with ‘cp’.
This list defines in which order the different modules/procedures are tried whenever Crack
has to decide of what to do next. Exceptions to this rule may be specified. For example,
some procedure, say P1, requires after its execution another specific procedure, say P2, to be
executed, no matter whether P2 is next according to proc list or not. This is managed by P1

writing a task for procedure P2 into a hot-list. Tasks listed in the global variable ‘to do list’

are dealt with in the ‘to do’ step which should always come first in proc list . A way
to have the convenience of running Crack automatically and still being able to break the
fixed rhythm prescribed by proc list is to have the entry stop batch in proc list and
have Crack started in automatic batch mode. Then execution is continuing until none of
the procedures which come before stop batch are applicable any more so that stop batch is
executed next which will stop automatic execution and go into interactive mode. This allows
either to continue the computation interactively, or to change the proc list with ‘cp’ and
to continue in automatic mode.

The default value of proc list does not include all possible modules because not all are
suitable for any kind of overdetermined system to be solved. The complete list is shown in
interactive mode under ‘cp’. A few basic modules are described in the following section. The
efficiency of Crack in automatic mode is very much depending on the content of proc list

and the sequence of its elements. Optimizing proc list for a given task needs experience
which can not be formalized in a few simple rules and will therefore not be explained in more
detail here. The following remarks are only guidelines.

3 Modules

The following modules are represented by numbers in the priority list. Each module can appear
with modifications under different numbers. For example, integration is available under 7, 24
and 25. Here 7 encodes an integrations of short equations 0 = ∂nf/∂xn. 7 has highest priority of
the three integrations. 24 encodes the integration of an equation that leads to the substitution
of a function and 25 refers to any integration and has lowest priority.
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3.1 Integration and Separation

An early feature in the development of the package Crack was the ability to integrate exact
differential equations and some generalizations of them (see [22]). As a consequence of integra-
tions 7, 24, 25 an increasing number of functions of fewer variables is introduced which sooner
or later produces equations with some independent variables occuring only explicitly and not
as variables in functions. Such equations are splitted by the separation module 2. Another
possibility are equations in which each independent variable occurs in at least one function in
the equation but no function depends on all variables. In this case so-called indirect separations
are appropriate: for linear problems 10 26 and for non-linear problems 48.

3.2 Substitutions

Substitutions can have a dramatic effect on the size and complexity of systems. Therefore
it is possible to have them not only done automatically but also controlled tightly, either by
specifying exactly what equation should be used to substitute which unknown and where, or by
picking a substitution out of a list of substitutions offered by the program {cs} . Substitutions
to be performed automatically can be controlled with a number of filters, for example, by

• limiting the size of the equation to be used for substitution, {length limit}

• limiting the size of equations in which the substitution is to be done, {target limit }

• allowing only linear equations to be used for substitutions, {lin subst}

• allowing equations to increase in size only up to some factor in order for a substitution
to be performed in that equation, {cost limit}

• allowing a substitution for a function through an expression only if that expression involves
exclusively functions of fewer variables, {less vars}

• allowing substitutions only that do not lead to a case distinction coefficient = 0 or not,

• specifying whether extra effort should be spent to identify the substitution with the lowest
bound on growth of the full system. {min growth}

Substitution types are represented by different numbers (3-6,15-21) depending on the subset of
the above filters to be used. If a substitution type is to be done automatically then from all
possible substitutions passing all filters of this type that substitution is selected that leads to
no sub-cases (if available) and that uses the shortest equation.

3.3 Factorization

It is very common that big algebraic systems contain equations that can be factorized. Factor-
izing an equation and setting the factors individually to zero simplifies the whole task because
factors are simpler expressions than the whole equation and setting them to zero they may lead
to substitutions and thereby further simplifications. The downside is that if problems with,
say 100 unknowns, would need 40 case-distinctions in order to be able to solve automatically
for the remaining 60 unknowns then this would require 240 cases to be investigated which is
impractical. The problem is to find the right balance, between delaying case-distinctions in
order not to generate too many cases and on the other hand introducing case distinctions as
early as necessary in order to simplify the system. This simplification may be necessary to
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solve the system but in any case it will speed up its solution (although at the price of having
to solve a simplified system at least twice, depending on the number of factors).

For large systems with many factorizable equations the careful selection of the next equation
to be factorized is important to gain the most from each factorization and to succeed with as
few as possible factorizations. Criteria which give factors and therefore equations a higher
priority are

• the number of equations in which this factor occurs,

• if the factor is a single unknown function or constant, then the number of times this
unknown turns up in the whole system,

• the total degree of the factor,

• the number of factors of an equation,

• and others.

It also matters in which order the factors are set to zero. For example, the equation 0 = ab
can be used to split into the 2 cases: 1. a = 0, 2. a ̸= 0, b = 0 or to split into the 2 cases
1. b = 0, 2. b ̸= 0, a = 0. If one of the 2 factors, say b, involves functions which occur only
linearly then this property is to be preserved and these functions should be substituted as such
substitutions preserve their linearity. But to have many such substitutions available, it is useful
to know of many non-linearly occuring functions to be non-zero as they occur as coefficients
of the linearly occuring functions. In the above situation it is therefore better to do the first
splitting 1. a = 0, 2. a ̸= 0, b = 0 because a ̸= 0 will be more useful for substitutions of linear
functions than b ̸= 0 would be.

An exception of this plausible rule occurs towards the end of all the substitutions of all the
linearly occuring bi when some bi are an overall factor to many equations. If one would then
set, say, b22 = 0 as the second case in a factorization, the first case would generate as subcases
factorizations of other equations where b22 = 0 would be the second case again and so on. To
avoid this one should investigate b22 = 0 as the first case in the first factorization.

The only purpose of that little thought experiment was to show that simple questions, like
’Which factored equation should be used first for case-distinctions and in which order to set
factors to zero?’ can already be difficult to answer in general.

Crack currently offers two factorization steps: (8) and (47).

3.4 Elimination (Gröbner Basis) Steps

To increase safety and avoid excessive expression swell one can apart from the normal call (30)
request to do Gröbner basis computation steps only if they are simplification steps replacing
an equation by a shorter equation. (27)

In a different version only steps are performed in which equations are included which do
not contain more than 3 unknowns. This helps to focus on steps which are more likely to solve
small sub-systems with readily available simple results. (57)

Often the computationally cheapest way to obtain a consistent (involutive) system of equa-
tions implies to change the ordering during the computation. This is the case when substitu-
tions of functions are performed which are not ranked highest in a lexicographical ordering of
functions. But Crack also offers an interactive way to

• change the lexicographical ordering of variables, {ov}

• change the lexicographical ordering of functions, {of}
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• give the differential order of derivatives a higher or lower priority in the total ordering
than the lexicographical ordering of functions, {og}

• give either the total differential order of a partial derivative a higher priority than the
lexicographical ordering of the derivative of that function or to take the lexicographical
ordering of derivatives as the only criterium. {of}

3.5 Solution of an under-determined differential equation

When solving an over-determined system of linear differential equations where the general
solution involves free functions, then in the last computational step often a single equation for
more than one function remains to be solved. Examples are the computation of symmetries
and conservation laws of non-linear differential equations which are linearizable. In Crack two
procedures are available, one for under-determined linear ODEs (22) and one for linear PDEs,
(23) both with non-constant coefficients.

3.6 Indirect Separation

Integrations introduce new functions of fewer variables. As equations are used to substitute
functions of all variables it is only a question of time that equations are generated in which no
function depends on all variables. If at least one variable occurs only explicitly then the equation
can be splitted which we call direct separation. But sometimes all variables appear as variables
to unknown functions, e.g. 0 = f(x)+g(y) although usually much more complicated with 10 or
20 independent variables and many functions that are depending on different combinations of
these variables. Because no variable occurs only explicitly, direct separations mentioned above
are not possible. Two different algorithms, one for linear indirectly separable equations (10),
(26) and one for non-linear directly separable equations (48) provide systematic ways of dealing
with such equations.

Indirectly separable equations always result when an equation is integrated with respect to
different variables, like 0 = fxy to f = g(x) + h(y) and a function, here f(x, y), is substituted.

3.7 Function and variable transformations

In the interactive mode one can specify a transformation of the whole problem with pt in which
old functions and variables are expressed in a mix of new functions and variables.

3.8 Solution of first order linear PDE

If a system contains a single linear first order PDE for just one function then in an automatic
step characteristic ODE-systems are generated, integrated if possible, a variable transformation
for the whole system of equations is performed to have in the first order PDE only one single
derivative and to make this PDE integrable for the integration modules. (39)

3.9 Length Reduction of Equations

An algorithm designed originally to length-reduce differential equations proved to be essential
in length reducing systems of bi-linear algebraic equations or homogeneous equations which
resulted from bi-linear equations during the solution process.

The aim of the method (11) is to find out whether one equation 0 = E1 can length reduce
another one 0 = E2 by replacing E2 through an appropriate linear combination αE1−βE2, β ̸=
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0. To find α, β one can divide each term of E2 through each term of E1 and count how
often each quotient occurs. If a quotient α/β occurs m times then αE1 − βE2 will have
≤ n1 + n2 − 2m terms because 2m terms will cancel each other. A length reduction is found if
n1+n2−2m ≤ max(n1, n2). The method becomes efficient after a few algorithmic refinements
discussed in [21]. Length reduced equations

• are more likely to length reduce other equations,

• are much more likely to be factorizable,

• are more suited for substitutions as the substitution induces less growth of the whole
systems and introduces fewer new occurences of functions in equations,

• are more likely to be integrable by being exact or being an ODE if the system consists of
differential equations,

• involve on average fewer unknowns and make the whole system more sparse. This sparse-
ness can be used to plan better a sequence of eliminations.

This concludes the listing of modules. Other aspects of Crack follow.

4 Features

4.1 Flexible Process Control

Different types of over-determined systems are more or less suited for an automatic solution.
With the currrent version (2002) it is relatively save to try solving large bi-linear algebraic
problems automatically. Another well suited area concerns over-determined systems of linear
PDEs. In contrast, non-linear systems of PDEs most likely require a more tight interactive
control. Different modes of operation are possible. One can

• perform one {a} or more computational steps {g} automatically, where each step is trying
modules in the order defined by the current priority list {p1} until one module succeeds
in its purpose,

• perform one module a specific number of times or as long as it is successful, {l}

• set a time limit until which the program should run automatically, {time limit, limit time}

• interrupt an on-going automatic computation and continue the computation interactively
by copying the file stop crack into the directory where the ongoing computation was
started and re-naming it stop (and by deleting stop to resume automatic computa-
tion),

• arrange the priority list of modules changes at a certain point in the computation when
the system of equations has changed its character,

• induce a case distinction whether a user-given expression is zero or not, {44}

• have a module that changes the priority list proc list dynamically, depending essentially
on the size and difficulty of the system but also on the success rate of previous steps. {61,
62, 63}

9



Apart from flexible control over what kind of steps to be done, the steps themselves can be
controlled more or less too, e.g. whether equations are selected by the module or the user.

Highest priority in the priority list have so-called to-do steps. The list of to-do steps is
usually empty but can be filled by any successful step if it requires another specific step to follow
instantly. For example, if a very simple equation 0 = fx is integrated then the substitution of
f should follow straight away, even if substitutions would have a low priority according to the
current priority list.

4.2 Total Data Control

To make wise decisions of how to continue the computation in an interactive session one needs
tools to inspect large systems of equations. Helpful commands in Crack print

• equations, inequalities, functions and variables, {e, pi, f}

• the occurence of all derivatives of selected functions in any equation, {v}

• a statistics summary of the equations of the system, {s}

• a matrix display of occurences of unknowns in all equations, {pd}

• the value of any LISP variable, {pv}

• the value of algebraic expressions that can be specified using equation names
(e.g. coeffn(e 5,df(f,x,y),2)), {pe}

• not under-determined subsystems. {ss}

Inspecting a computation which already goes on for hours or a day and that has performed
many thousand steps is time consuming. The task is made easier with the possibility to plot
graphically as a function of time: the type of steps performed, the number of unknowns, the
number of remainig equations, the number of terms in these equations and the memory usage.
{ps}

When non-linear systems are considered and many case distinctions and sub-(sub-...)case
distinctions are made in a long computation then one easily loses track. With one command one
can list all cases that have been considered so far with their assumption, the number of steps
made until they are solved or until the next sub-case distinction was made and the number of
solutions contained in each completed case. {ls}

4.3 Safety

When working on large problems it may come to a stage where computational steps are nec-
essary, like substitution, which are risky in the sense that they may simplify the problem but
also complicate it by increasing its size. To avoid this risk a few safety features have been
implemented.

• At any time during the computation one can save a backup of the complete current
situation in a file and also load a backup. The command sb "file name" saves all global
variables and data into an ASCII file and the command rb "file name" reads these
data from a file. The format is independent of the computer used and independent of
the underlying Lisp version. Apart from reading in a backup file during an interactive
computation with rb one also can start a computation with a backup file. After loading
Crack one makes in Reduce the call CRACKSHELL()$ followed by the file name of the
backup.
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• All key strokes are automatically recorded in a list which is available after each interactive
step with ph, or when the computation has finished through lisp reverse history ;.
This list can be fed into Crack at the beginning of a new computation so that the same
operations are performed automatically that were performed interactively before. The
purpose is to be able to do an interactive exploration first and to repeat it afterwards
automatically without having to note with pen or pencil all steps that had been done.

By assigning this list to the Lisp variable old history before calling Crack with off

batch mode the same steps as in the previous run are performed first as Crack is first
reading input from old history and only if that is nil then read from the keyboard.

• During an automatic computation the program might start a computational step which
turns out to take far too long. It would be better to stop this computation and try
something else instead. But in computer algebra with lots of global variables involved it
is not straight forward to stop a computation in the middle of it. If one would use time
as a criterion then it could happen that time is up during a garbage collection which to
stop would be deadly for the session. Crack allows to set a limit of garbage collections
for any one of those computations that have the potential to last forever, like algebraic
factorizations of large expressions. With such an arrangement an automatic computation
can not get stuck anymore due to lengthy factorizations, searches for length reductions or
elimination steps. {max gc elimin, max gc fac, max gc red len, max gc short, max gc ss}

• Due to a recent (April 2002) initiative of Winfried Neun the parallel version of the com-
puter algebra system REDUCE has been re-activated and is running on the Beowulf
cluster at Brock University [20]. This allows conveniently (with {pp} ) to duplicate the
current status of a Crack computation to another computer, to try out there differ-
ent operations (e.g. risky ones) until a viable way to continue the computation is found
without endangering the original session.

4.4 Managing Solutions

Non-linear problems can have many solutions. The number of solutions found by Crack
can even be higher because to make progress Crack may have factorized an equation and
considered the two cases a = 0 and a ̸= 0 whereas solutions in both cases could be merged to
only one solution without any restriction for a. This merging of solutions can be accomplished
with a separate program merge sol() after the computation.

Another form of post-processing is the production of a web page for each solution, like
http://lie.math.brocku.ca/twolf/bl/v/v1l05o35-s1.html

If in the solution of over-determined differential equations the program performs integrations
of equations before the differential Gröbner basis was computed then in the final solution there
may be redundant constants or functions of integration. Redundant constants or functions in
a solution are not an error but they make solutions appear unnecessarily complicated. In a
postprocessing step these functions and constants can be eliminated. {adjust fnc, drop const(),
dropredundant()}

4.5 Parallelization

The availability of a parallel version of Crack was mentioned above allowing to try out different
ways to continue an ongoing computation. A different possibility to make use of a cluster of
computers with Crack is, to export automatically the investigation of sub-cases and sub-sub-
cases to different computers to be solved in parallel.
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It was explained above how factorizations may be necessary to make any progress but also
their potential of exploding the time requirements. By running the computation on a cluster
and being able to solve many more cases one can give factorizations a higher priority and
capitalize on the benefit of factorizations, i.e. the simplification of the problem.

4.6 Relationship to Gröbner Basis Algorithms

For systems of equations in which the unknown constants or functions turn up only polynomially
a well known method is able to check the consistency of the system. For algebraic systems this
is the Gröbner Basis Method and for systems of differential equations this is the differential
Gröbner Basis method. To guarantee the method to terminate a total ordering of unknowns
and their derivatives has to be introduced. This ordering determines which highest powers of
unknowns are to be eliminated next or which highest order derivatives have to be eliminated
next using integrability conditions. Often such eliminations lead to exponential growth of the
generated equations. In the package Crack such computations are executed with only a low
priority. Operations have a higher priority which reduce the length of equations, irrespective of
any orderings. Violating any ordering a finite number of times still guarantees a finite algorithm.
The potential gain is large as described next.

4.7 Exploiting Bi-linearity

In bi-linear algebraic problems we have 2 sets of variables a1, .., am and b1, .., bn such that all
equations have the form 0 =

∑l
k=1 γkaikbjk , γk ∈ G. Although the problem is linear in the ai

and linear in the bj it still is a non-linear problem. A guideline which helps keeping the structure
of the system during computation relatively simple is to preserve the linearity of either the ai
or the bj as long as possible. In classification problems of integrable systems the ansatz for the
symmetry/first integral usually involves more terms and therefore more constants (called bj in
applications of Crack) than the ansatz for the integrable system (with constants ai). A good
strategy therefore is to keep the system linear in the bj during the computation, i.e. to

• substitute only a bj in terms of ai, bk, or an ai in terms of an ak but not an ai in terms of
any bk,

• do elimination steps for any bj or for an ai if the involved equations do not contain any
bk.

The proposed measures are effective not only for algebraic problems but for ODEs/PDEs too
(i.e. to preserve linearity of a sub-set of functions as long as possible). {flin }

4.8 Occurrence of sin, cos or other special functions

If the equations to be solved involve special functions, like sin and cos then one is inclined
to add let-rules for simplifying expressions. Before doing this the simplification rules at the
end of the file crinit.red should be inspected such that new rules do not lead to cycles with
existing rules. One possibility is to replace existing rules, for example to substitute the existing
rule

trig1_:={sin(~x)**2 => 1-cos(x)**2}$

by the new rule
trig1_:={cos(~x)**2 => 1-sin(x)**2}$ .

These rules are switched off when integrations are performed in order not to interfere with the
Reduce Integrator.
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Apart from an initial customization of let-rules to be used during the whole run one can
also specify and clear let-rules during a computation using the interactive commands lr,cr.

4.9 Exchanging time for memory

The optimal order of applying different methods to the equations of a system is not fixed. It
does depend, for example, on the distributions of unknown functions in the equations and on
what the individual method would produce in the next step. For example, it is possible that
the decoupling module which applies integrability conditions through cross differentiations of
equations is going well up to a stage when it suddenly produces huge equations. They not only
occupy much memory, they also are slow to handle. Right before this explosion started other
methods should have been tried (shortening of equations, any integrations, solution of under-
determined ODEs if there are any,...). These alternative methods are normally comparatively
slow or unfavourable as they introduce new functions but under the current circumstances they
may be perfect to avoid any growth and to complete the calculation. How could one have
known beforehand that some method will lead to an explosion? One does not know. But one
can regularly make a backup with the interactive sb command and restart at this situation if
necessary.

4.10 Customization

The addition of new modules to perform new specialized computations is easy. Only the input
and output of any new module are fixed. The input consists of the system of equations, the list
of inequalities and the list of unknowns to be computed. The output includes the new system
of equations and new intermediate results. The module name has to be added to a list of all
modules and a one line description has to be added to a list of descriptions. This makes it easy
for users to add special techniques for the solution of systems with extra structure. A dummy
template module {58} is already added and has only to be filled with content.

4.11 Debugging

A feature, useful mainly for debugging is that in the middle of an ongoing interactive compu-
tation the program can be changed by loading a different version of Crack procedures. Thus
one could advance quickly close to the point in the execution where an error occurs, load a
version of the faulty procedure that gives extensive output and watch how the fault happens
before fixing it.

The possibility to interrupt REDUCE itself temporarily and to inspect the underlying LISP
environment {br} or to execute LISP commands and to continue with the Crack session
afterwards {pc} led to a few improvements and fixes in REDUCE itself.

5 Technical issues

5.1 System requirements

The required system is Reduce, version 3.6. or later. The PSL version is faster whereas the
CSL version seems to be more stable under WINDOWS. Also it provides a portable compiled
code.

Memory requirements depend crucially on the application. The crack.rlg file is produced
from running crack.tst in a 4MB session running Reduce, version 3.7 under Linux. On the
other hand it is not difficult to formulate problems that consume any amount of memory.

13



5.2 Availability

The package Crack together with LiePDE, ConLaw and ApplySym are included with
Reduce.

Publications related to Crack itself and to applications based on it can be found under
http://lie.math.brocku.ca/twolf/home/publications.html#1.

5.3 The files

The following files are provided with Crack

crack.red contains read-in statements of a number of files cr*.red
crack.tst contains test-examples
crack.rlg contains the output of crack.tst
crack.tex this manual.

6 Reference

6.1 Elements of proc list

The interactive command p1 shows proc list . This list defines the order in which procedures
are tried if a step is to be performed automatically. p2 shows the complete list as it is shown
below. To select any one procedure of the complete list interactively, one simply inputs the
number shown in (). The numbering of procedures grew historically. Each number has only
little or no connection with the priority of the procedure it is labeling.

to do (1): hot list of steps to be taken next, should always come first,

subst level ? (3-6,15-21): substitutions of functions by expressions, substitutions differ
by their maximal allowed size and other properties, to find out which function has which
properties one currently has to inspect the procedure definitions of subst level ? in the

file crmain.red.

separation (2): what is described as direct separation in the next section,

gen separation (26): what is described as indirect separation in the next section, only to be

used for linear problems,

quick gen separation (10): generalized separation of equations with an upper size limit,

quick integration (7): integration of very specific short equations,

full integration (24): integration of equations which lead to a substitution,

integration (25): any integration,

factorize to substitute (8): splitting the computation into the investigation of different
subcases resulting from the algebraic factorization of an equation, only useful for non-
linear problems, and applied only if each one of the factors, when individually set to zero,

would enable the substitution of a function.
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factorize any (47): splitting into sub-cases based on a factorization even if not all factors

set to zero lead to substitutions.

change proc list (37): reserved name of a procedure to be written by the user that does
nothing else but changing proc list in a fixed manner. This is to be used if the com-
putation splits naturally into different parts and if it is clear from the beginning what the

computational methods (proc list ) have to be.

stop batch (38): If the first steps to simplify or partially solve a system of equations are
known and should be done automatically and afterwards Crack should switch into in-
teractive mode then stop batch is added to proc list with a priority just below the

steps to be done automatically.

drop lin dep (12): module to support solving big linear systems (still experimental),

find 1 term eqn (13): module to support solving big linear systems (still experimental),

trian lin alg (14): module to support solving big linear systems (still experimental),

undetlinode (22): parametric solution of single under determined linear ODE (with non-
constant coefficients), only applicable for linear problems (Too many redundant functions
resulting from integrations may prevent further integrations. If they are involved in single
ODEs then the parametric solution of such ODEs treated as single underdetermined
equations is useful. Danger: new generated equations become very big if the minimal

order of any function in the ODE is high.),

undetlinpde (23): parametric solution of single under determined linear PDE (with non-

constant coefficients), only applicable for linear problems (still experimental),

alg length reduction (11): length reduction by algebraic combination, only for linear prob-
lems, one has to be careful when combining it with decoupling as infinite loops may occur

when shortening and lowering order reverse each other,

diff length reduction (27): length reduction by differential reduction,

decoupling (30): steps towards the computation of a differential Gröbner Basis,

add differentiated pdes (31): only useful for non-linear differential equations with leading

derivative occuring non-linearly,

add diff ise (32): for the treatment of non-linear indirectly separable equations,

multintfac (33): to find integrating factors for a system of equations, should have very slow

priority if used at all,

alg solve single (34): to be used for equations quadratic in the leading derivative,

alg solve system (35): to be used if a (sub-)system of equations shall be solved for a set of

functions or their derivatives algebraically,

subst derivative (9): substitution of a derivative of a function everywhere by a new func-

tion if such a derivative exists
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undo subst derivative (36): undo the above substitution.

del redundant fc (40): Drop redundant functions and constants. For that an overdeter-
mined PDE - system is formulated and solved to set redundant constants / functions of

integration to zero. This may take longer if many functions occur.

find trafo (39): finding a first order linear PDE, by solving it the program finds a variable
transformation that transforms the PDE to a single derivative and makes the PDE in-
tegrable for the integration modules. Because a variable transformation was performed
the solution contains only new functions of integration which depend on single (new)
variables and not on expressions of them, like sums of them. Therefore the result of the
integration can be used for substitutions in other equations. if the transformation would
not have been made then the solution of the PDE would involve arbitrary functions of
expressions and could not be used for the other equations using the current modules of

Crack. A general transformation can be done interactively with the command cp.

sub problem (41): Solve a subset of equations first (still experimental),

del redundant de (28): Delete redundant equations,

idty integration (29): Integrate an identity

gen separation2 (48): Indirect separation of a pde, this is a 2nd version for non-linear PDEs

find and use sub systems12 (49): Find sub-systems of equations with at least as many
equations as functions, in this case find systems with at most 2 functions, none of them
a function of the set flin (these are functions which occur initially only linearly in a

non-linear problem, flin is assigned initially by the user).

find and use sub systems13 (50): like above only with at most 3 functions, none from flin

find and use sub systems14 (51): like above only with at most 4 functions, none from flin

find and use sub systems15 (52): like above only with at most 5 functions, none from flin

find and use sub systems22 (53): like above only with at most 2 functions, only flin are

considered, all others ignored

find and use sub systems23 (54): like above only with at most 3 functions, only flin are

considered, all others ignored

find and use sub systems24 (55): like above only with at most 4 functions, only flin are

considered, all others ignored

find and use sub systems25 (56): like above only with at most 5 functions, only flin are

considered, all others ignored
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high prio decoupling (57): do a decoupling step with two equations that in total involve

at most 3 different functions of all independent variables in these equations

user defined (58): This is an empty procedure which can be filled by the user with a very
specific computational step that is needed in a special user application. Template:

symbolic procedure user_defined(arglist)$

begin % arglist is a lisp list {pdes,forg,vl_} where

% pdes is the list of names of all equations

% forg is the list of original functions + their values

% as far as known

% vl_ the list of independent variables

...

return if successful then list(pdes,forg)

% new pdes + functions and their value

else nil

end$

alg groebner (59): call of the Reduce procedure groebnerf trying to solve the whole system
under the assumption that it is a completely algebraic polynomial system. All resulting

solutions are considered individually further.

solution check (60): This procedure tests whether a solution that is defined in an external
procedure sol define() is still contained in the general solution of the system currently
under investigation. This procedure is useful to find the place in a long computation
where a special solution is either lost or added to the general solution of the system to
be solved. Template:

algebraic procedure sol_define$

<< % This procedure contains the statements that specify a solution

%Example: Test whether s=h_-y**2/t**2, u=y/t is a solution

% where h_=h_(t)

depend h_,t$

% returned is a list of expressions that vanish for the solution

% to be tested, in this example:

{s-(h_-y**2/t**2),u-y/t}

>>$

6.2 Online help

The following commands and their one line descriptions appear in the same order as in the
online help.

6.2.1 Help to help

hd Help to inspect data
hp Help to proceed
hf Help to change flags & parameters
hc Help to change data of equations
hi Help to work with identities
hb Help to trace and debug
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6.2.2 Help to inspect data

e Print equations
eo Print overview of functions in equations
pi Print inequalities
f Print functions and variables
v Print all derivatives of all functions
s Print statistics
fc Print no of free cells
pe Print an algebraic expression
ph Print history of interactive input
pv Print value of any lisp variable
pf Print no of occurences of each function
pr Print active substitution rules
pd Plot the occurence of functions in equations
ps Plot a statistical history
lc List all case distinctions
ws Write statistical history in file
sn Show name of session
ss Find and print sub-systems
w Write equations into a file

6.2.3 Help to proceed

a Do one step automatically
g Go on for a number of steps automatically
t Toggle between automatic and user selection of equations (expert mode=nil/t).
p1 Print a list of all modules in batch mode
p2 Print a complete list of all modules
# Execute the module with the number ‘#’ once
l Execute a specific module repeatedly
sb Save complete backup to file
rb Read backup from file
ep Enable parallelism
dp Disable parallelism
pp Start an identical parallel process
kp Kill a parallel process
x Exit interactive mode for good
q Quit current level or crack if in level 0

6.2.4 Help to change flags & parameters

pl Maximal length of an expression to be printed
pm Toggle to print more or less information about pdes (print more)
pa Toggle to print all or not all information about the pdes (print all)
cp Change the priorities of procedures
og Toggle ordering between ‘lexicographical ordering of functions having

a higher priority than any ordering of derivatives’ and the opposite
(lex fc=t) resp. (lex fc=nil)

od Toggle ordering between ‘the total order of derivatives having a higher
priority than lexicographical ordering’ (lex df=nil) or not (lex df=t)
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oi Interactive change of ordering on variables
or Reverse ordering on variables
om Mix randomly ordering on variables
of Interactive change of ordering on functions
op Print current ordering
ne Root of the name of new generated equations (default: e )
nf Root of the name of new functions and constants (default: c )
ni Root of the name of new identities (default: id )
na Toggle for the NAT output switch (!*nat)
as Input of an assignment
kp Toggle for keeping a partitioned copy of each equation (keep parti)
fi Toggle for allowing or not allowing integrations of equations which

involve unresolved integrals (freeint )
fa Toggle for allowing or not allowing solutions of ODEs involving the

abs function (freeabs )
cs Switch on/off the confirmation of intended substitutions and of the

order of the investigation of subcases resulting in a factorization
fs Enforce direct separation
ll change of the line length
re Toggle for allowing to re-cycle equation names (do recycle eqn)
rf Toggle for allowing to re-cycle function names (do recycle fnc)
st Setting a CPU time limit for un-interrupted run
cm Adding a comment to the history list
lr Adding a LET-rule
cr Clearing a LET-rule

6.2.5 Help to change data of equations

r Replace or add one equation
rd Reduce an equation modulo LET rules
n Replace one inequality
de Delete one equation
di Delete one inequality
c Change a flag or property of one pde
pt Perform a transformation of functions and variables

6.2.6 Help to work with identities

i Print identities between equations
id Delete redundand equations
iw Write identities to a file
ir Remove list of identities
ia Add or replace an identity
ih Start recording histories and identities
ip Stop recording histories and identities
ii Integrate an identity
ic Check the consistency of identity data
iy Print the history of equations
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6.2.7 Help to trace and debug

tm Toggle for tracing the main procedure (tr main)
tg Toggle for tracing the generalized separation (tr gensep)
ti Toggle for tracing the generalized integration (tr genint)
td Toggle for tracing the decoupling process (tr decouple)
tl Toggle for tracing the decoupling length reduction process (tr redlength)
ts Toggle for tracing the algebraic length reduction process (tr short)
to Toggle for tracing the ordering procedures process (tr orderings)
tr Trace an arbitrary procedure
ut Untrace a procedure
br Lisp break
pc Do a function call
in Reading in a REDUCE file

6.3 Global variables

The following is a complete list of identifiers used as global lisp variables (to be precise symbolic
fluid variables) within Crack. Some are flags and parameters, others are glaboal variables,
some of them can be accessed after the Crack run.

!*allowdfint bak !*dfprint bak !*exp bak !*ezgcd bak !*fullroots bak

!*gcd bak !*mcd bak !*nopowers bak !*ratarg bak !*rational bak

!*batch mode abs adjust fnc allflags batchcount backup collect sol

confirm subst cont contradiction cost limit5 current dir

default proc list do recycle eqn do recycle fnc done trafo

eqname expert mode explog facint flin force sep fname fnew

freeabs freeint ftem full proc list gcfree!* genint glob var

global list integer global list ninteger global list number high gensep

homogen history idname idnties independence ineq inter divint

keep parti last steps length inc level lex df lex fc limit time

lin problem lin test const logoprint low gensep max gc counter

max gc elimin max gc fac max gc red len max gc short max gc ss

max red len maxalgsys mem eff my gc counter nequ new gensep nfct

nid odesolve old history orderings target limit 0 target limit 1

target limit 2 target limit 3 target limit 4 poly only potint print

print all print more proc list prop list pvm able quick decoup

record hist recycle eqns recycle fcts recycle ids reducefunctions

repeat mode safeint session simple orderings size hist size watch

sol list solvealg stepcounter stop struc dim struc eqn subst 0

subst 1 subst 2 subst 3 subst 4 time time limit to do list tr decouple

tr genint tr gensep tr main tr orderings tr redlength tr short trig1

trig2 trig3 trig4 trig5 trig6 trig7 trig8 userrules vl

6.4 Global flags and parameters

The list below gives a selection of flags and global parameters that are available, for example, to
fine tune the performance according to specific needs of the system of equations that is studied.
Usually they are not needed and very few are used regularly by the author. The interactive
command that changes the flag/parameter is given in [ ], default values of the flags/parameters
are given in (). All values can be changed interactively with the as command. The values of
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the flags and parameters can either be set after loading Crack and before starting Crack
with a lisp assignment, for example,
lisp(print_:=8)$

or after starting Crack in interactive mode with specific commands, like pl to change specifi-
cally the print length determining parameter print , or the command as to do an assignment.
The values of parameters/flags can be inspected interactively using pv and changed with as.

!*batch mode [x] (t) : running crack in interactive mode (!*batch mode=nil) or automat-
icly (!*batch mode=t). It can also be set in algebraic mode before starting Crack by
ON/OFF BATCH MODE. Interactive mode can be left and automatic computation be started
by the interactive commant x.

!*iconic (nil) : whether new processes in parallelization should appear as icons (t) or win-
dows (nil)

adjust fnc (nil) : if t then free constants/functions are scaled and redundant ones are
dropped to simplify the result after the computation has been completed

collect sol (t) : whether solutions found shall be collected and returned together at the
end or not (to save memory), matters only for non-linear problems with very many special
solutions. If a computation has to be performed with any solution that is found, then
these commands can be put into an algebraic procedure crack out(eqns, assigns,

freef, ineq) which is currently empty in file crmain.red but which is called for each
solution.

confirm subst [cs] (nil) : whether substitutions have to be confirmed interactively

cont (nil) : interactive user control for integration or substitution of large expressions (en-
abled = t)

cost limit5 (100) : maximal number of extra terms generated by a subst.

do recycle (nil) : whether function names shall be recycled or not (saves memory but com-
putation is less clear to follow)

done trafo (nil) : an (algebraic mode) list of backtransformations that would invert done
transformations, this list is useful after Crack completed to invert transformations if
needed

eqname [ne] (’e ) : name of new equations

expert mode [t] (nil) : For expert mode=t the equations that are involved in the next
computational step are selected by Crack, for expert mode=nil the user is asked to
select one or two equations which are to be worked with in the next computational step.

facint (1000) : if equal nil then no search for integrating factors otherwise equal the max
product terms*kernels for searching an integrating factor

flin (nil) : a list of functions occuring only linearly in an otherwise non-linear problem.
flin has to be assigned before calling Crack. During execution it is tried to preserve
the linearity of these functions as long as possible.

fname [nf] (’c ) : name of new functions and constants (integration)
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force sep (nil) : whether direct separation should be forced even if functions occur in the
supposed to be linear independent explicit expressions (for non-lin. prob.)

freeabs [fi] (t) : Do not use solutions of ODEs that involve the abs function

freeint [fi] (t) : Do only integrations if expl. part is integrable

genint (15) : if =nil then generalized integration disabled else equal the maximal number
of new functions and extra equations due to the generalized integration of one equation

high gensep (300) : min. size of expressions to separate in a generalized way by
‘quick gen separation’

homogen (nil) : Test for homogeneity of each equation (for debugging)

idname [ni] (’id ) : name of new equations

idnties (nil) : list of identities resulting from reductions and integrability conditions

independence (nil) : interactive control of linear independence (enabled = t)

inter divint (nil) : whether the integration of divergence identities with more than 2 dif-
ferentiation variables shall be confirmed interactively

keep parti [kp] (nil) : whether for each equation a copy in partitioned form is to be stored
to speed up several simplifications but which needs more memory

last steps (nil) : a list of the last steps generated and updated automatically in order to
avoid cycles

length inc (1.0) : factor by which the length of an expression may grow when performing
diff length reduction

lex df [od] (nil) : if t then use lexicographical instead of total degree ordering of deriva-
tives

lex fc [og] (t) : if t then lexicographical ordering of functions has higher priority than any
ordering of derivatives

limit time (nil) : = time() + how many more seconds allowed in batch mode

logoprint (t) : print logo after crack call

low gensep (6) : max. size of expressions to be separated in a generalized way by
‘quick gen separation’

max gc counter (100000000) : maximal total number of garbage collections

max gc elimin (15) : maximal number of garbage collections during elimination in decou-
pling

max gc fac (15) : maximal number of garbage collections during factorization

max gc red len (30) : maximal number of garbage collections during length reduction

max gc short (40) : maximal number of garbage collections during shortening
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max gc ss (10) : maximal number of garbage collections during search of sub systems

max red len (1000000) : maximal product of lengths of two equations to be combined with
length-reducing decoupling

maxalgsys (20) : max. number of equations to be solved in specialsol

mem eff (t) : whether to be memory efficient even if slower

my gc counter (0) : initial value of my gc counter

nequ (1) : index of the next new equation

new gensep (nil) : whether or not a newer (experimental) form of gensep should be used

nfct (1) : index of the next new function or constant

nid (1) : index of the next new identity

odesolve (100) : maximal length of a de (number of terms) to be integrated as ode

old history (nil) : old history is interactive input to be read from this list

poly only (nil) : all equations are polynomials only

potint (t) : allowing ‘potential integration’

print [pl] (12) : maximal length of an expression to be printed

print all [pa] (nil) : Print all informations about the pdes

print more [pm] (t) : Print more informations about the pdes

quick decoup (nil) : whether decoupling should be done faster with less care for saving
memory

record hist (nil) : whether the history of equations is to be recorded

safeint (t) : uses only solutions of ODEs with non-vanishing denominator

session (‘‘bu’’+random number+date) : when loading Crack or executing

size watch (nil) : whether before each computational step the size of the system shall be
recorded in the global variable size hist

solvealg (nil) : Use SOLVE for algebraic equations

struc eqn (nil) : whether the equations has the form of structural equations (an application
are the Killing vector and Killing tensor computations)

subst * : maximal length of an expression to be substituted, used with different values for
different procedures subst level *

target limit * (nil) : maximum of product length(pde)*length(substituted expression) for
a PDE which is to be used for a substitution, If target limit * = nil then no length
limit, used with different values for different procedures subst level *

time (nil) : print the time needed for running crack
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time limit (nil) : whether a time limit is active after which batch-mode is interrupted to
interactive mode

tr decouple [td] (nil) : Trace decoupling process

tr genint [ti] (nil) : Trace generalized integration

tr gensep [ts] (nil) : Trace generalized separation

tr main [tm] (nil) : Trace main procedure

tr orderings [to] (nil) : Trace orderings stuff

tr redlength [tr] (nil) : Trace length reduction

7 A more detailed description of some of the modules

The package Crack contains a number of modules. The basic ones are for computing a pseudo
differential Gröbner Basis (using integrability conditions in a systematic way), integrating exact
PDEs, separating PDEs, solving DEs containing functions of only a subset of all variables and
solving standard ODEs (of Bernoulli or Euler type, linear, homogeneous and separable ODEs).
These facilities will be described briefly together with examples. The test file crack.tst

demonstrates these and others.

7.1 Pseudo Differential Gröbner Basis

This module (called ‘decoupling’ in proc list ) reduces derivatives in equations by using other
equations and it applies integrability conditions to formulate additional equations which are
subsequently reduced, and so on.

A general algorithm to bring a system of PDEs into a standard form where all integra-
bility conditions are satisfied by applying a finite number of additions, multiplications and
differentiations is based on the general theory of involutive systems [1, 2, 3].

Essential to this theory is a total ordering of partial derivatives which allows assignment
to each PDE of a Leading Derivative (LD) according to a chosen ordering of functions and
derivatives. Examples for possible orderings are

lex. order of functions > lex. order of variables,

lex. order of functions > total differential order > lex. order of variables,

total order > lex. order of functions > lex. order of variables

or mixtures of them by giving weights to individual functions and variables. Above, the ‘>’
indicate “before” in priority of criteria. The principle is then to

take two equations at a time and differentiate them as often as necessary to get equal LDs,

regard these two equations as algebraic equations in the common LD and calculate the
remainder w.r.t. the LD, i.e. to generate an equation without the LD by the Euclidean
algorithm, and

add this equation to the system.
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Usually pairs of equations are taken first, such that only one of both equations must be dif-
ferentiated. If in such a generation step one of both equations is not differentiated then it is
called a simplification step and this equation will be replaced by the new equation.

The algorithm ends if each combination of two equations yields only equations which simplify
to an identity modulo the other equations. A more detailed description is given e.g. in [5, 6].

Other programs implementing this algorithm are described e.g. in [9, 5, 10, 6, 7, 8] and [11].
In the interactive mode of Crack it is possible to change the lexicographical ordering

of variables, of functions, to choose between ‘total differential order’ ordering of variables or
lexicographical ordering of variables and to choose whether lexicographical ordering of functions
should have a higher priority than the ordering of the variables in a derivative, or not.

An example of the computation of a differential Gröbner Basis is given in the test file
crack.tst.

7.2 Integrating exact PDEs

The technical term ‘exact’ is adapted for PDEs from exterior calculus and is a small abuse of
language but it is useful to characterize the kind of PDEs under consideration.

The purpose of the integration module in Crack is to decide whether a given differential
expression D which involves unknown functions f i(xj), 1 ≤ i ≤ m of independent variables
xj, 1 ≤ j ≤ n is a total derivative of another expression I w.r.t. some variable xk, 1 ≤ k ≤ n

D(xi, f j, f j,p , f
j,pq , . . .) =

dI(xi, f j, f j,p , f
j,pq , . . .)

dxk
.

The index k is reserved in the following for the integration variable xk. With an appropriate
function of integration cr, which depends on all variables except xk it is no loss of generality to
replace 0 = D by 0 = I + cr in a system of equations.

Of course there always exists a function I with a total derivative equal to D but the question
is whether for arbitrary f i the integral I is functionally dependent only on the f i and their
derivatives, and not on integrals of f i.
Preconditions:
D is a polynomial in the f i and their derivatives. The number of functions and variables is
free. For deciding the existence of I only, the explicit occurrence of the variables xi is arbitrary.
In order to actually calculate I explicitly, D must have the property that all terms in D must
either contain an unknown function of xk or must be formally integrable w.r.t. xk. That means
if I exists then only a special explicit occurrence of xk can prevent the calculation of I and
furthermore only in those terms which do not contain any unknown function of xk. If such
terms occur in D and I exists then I can still be expressed as a polynomial in the f i, f i,j , . . .
and terms containing indefinite integrals with integrands explicit in xk.
Algorithm:
Successive partial integration of the term with the highest xk-derivative of any f i. By that the
differential order w.r.t. xk is reduced successively. This procedure is always applicable because
steps involve only differentiations and the polynomial integration (

∫
hn ∂h

∂x
dx = hn+1/(n + 1))

where h is a partial derivative of some function f i. For a more detailed description see [22].
Stop:
Iteration stops if no term with any xk-derivative of any f i is left. If any f i(xk) occurs in the
remaining un-integrated terms then I is not expressible with f i and its derivatives only. In case
no f i(xk) occurs, then any remaining terms can contain xk only explicitly. Whether they can
be integrated or not depends on their formal integrability. For their integration the Reduce
integrator is applied.
Speed up:
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The partial integration as described above preserves derivatives with respect to other variables.
For example, the three terms f,x , ff,xxx , f,xxy can not combine somehow to the same terms
in the integral because if one ignores x-derivatives then it is clear that f, f 2 and f,y are three
functionally independent expressions with respect of x-integrations. This allows the following
drastic speed up for large expressions. It is possible to partition the complete sum of terms
into partial sums such that each of them has to be integrable on its own. That is managed by
generating a label for each term and collecting terms with equal label into partial sums. The
label is produced by dropping all x-derivatives from all functions to be computed and dropping
all factors which are not powers of derivatives of functions to be computed.

The partitioning into partial sums has two effects. Firstly, if the integration of one partial
sum fails then the remaining sums do not have to be tried for integration. Secondly, doing
partial integration for each term means doing many subtractions. It is much faster to subtract
terms from small sums than from large sums.

Example :
We apply the above algorithm to

D := 2f,y g
′ + 2f,xy g + gg′3 + xg′4 + 3xgg′2g′′ = 0 (1)

with f = f(x, y), g = g(x), ′ ≡ d/dx. Starting with terms containing g and at first with the
highest derivative g,xx , the steps are∫

3xgg,2x g,xx dx =
∫
d(xgg,3x ) −

∫
(∂x(xg)g,

3
x ) dx

= xgg,3x −
∫
g,3x (g + xg,x )dx,

I := I + xgg,3x

D := D − g,3x (g + xg,x )− 3xgg,2x g,xx

The new terms −g,3x (g + xg,x ) are of lower order than g,xx and so in the expression D the
maximal order of x-derivatives of g is lowered. The conditions that D is exact are the following.

The leading derivative must occur linearly before each partial integration step.

After the partial integration of the terms with first order x-derivatives of f the remaining D
must not contain f or other derivatives of f , because such terms cannot be integrated
w.r.t. x without specifying f .

The result of x- and y-integration in the above example is (remember g = g(x))

0 = 2fg + xygg,3x +c1(x) + c2(y) (= I). (2)

Crack can now eliminate f and substitute for it in all other equations.
Generalization:
If after applying the above basic algorithm, terms are left which contain functions of xk but
each of these functions depends only on a subset of all xi, 1 ≤ i ≤ n, then a generalized version
of the above algorithm can still provide a formal expression for the integral I (see [22]). The
price consists of additional differential conditions, but they are equations in fewer variables
than occur in the integrated equation. Integrating for example

D̃ = D + g2(y2 + x sin y + x2ey) (3)

by introducing as few new functions and additional conditions as possible gives for the integral
Ĩ

Ĩ = 2fg + xygg,3x +c1(x) + c2(y)

+
1

3
y3c′′3 − cos y(xc′′3 − c3) + ey(x2c′′3 − 2xc′3 + 2c3)
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with c3 = c3(x),
′ ≡ d/dx and the single additional condition g2 = c′′′3 . The integration of the

new terms of (3) is achieved by partial integration again, for example∫
g2x2dx = x2

∫
g2dx−

∫
(2x

∫
g2dx)dx

= x2
∫

g2dx− 2x
∫ ∫

g2dx+ 2
∫ ∫ ∫

g2dx

= x2c′′3 − 2xc′3 + 2c3.

Characterization:
This algorithm is a decision algorithm which does not involve any heuristic. After integration,
the new equation is still a polynomial in f i and in the new constant or function of integration.
Therefore the algorithms for bringing the system into standard form can still be applied to the
PDE-system after the equation D = 0 is replaced by I = 0.

The complexity of algorithms for bringing a PDE-system into a standard form depends
nonlinearly on the order of these equations because of the nonlinearly increasing number of
different leading derivatives and by that the number of equations generated intermediately by
such an algorithm. It therefore in general pays off to integrate equations during such a standard
form algorithm.

If an f i, which depends on all variables, can be eliminated after an integration, then de-
pending on its length it is in general helpful to substitute f i in other equations and to reduce
the number of equations and functions by one. This is especially profitable if the replaced
expression is short and contains only functions of fewer variables than f i.
Test:
The corresponding test input is

depend f,x,y;

depend g,x;

crack({2*df(f,y)*df(g,x)+2*df(f,x,y)*g+g*df(g,x)**3

+x*df(g,x)**4+3*x*g*df(g,x)**2*df(g,x,2)

+g**2*(y**2+x*sin y+x**2*e**y)},

{},{f,g},{});

The meaning of the Reduce command depend is to declare that f depends in an unknown
way on x and y. For more details on the algorithm see [22].

7.3 Direct separation of PDEs

As a result of repeated integrations the functions in the remaining equations have fewer and
fewer variables. It therefore may happen that after a substitution an equation results where
at least one variable occurs only explicitly and not as an argument of an unknown function.
Consequently all coefficients of linearly independent expressions in this variable can be set to
zero individually.
Example:
f = f(x, y), g = g(x), x, y, z are independent variables. The equation is

0 = f,y +z(f 2 + g,x ) + z2(g,x +yg2) (4)

x-separation? → no
y-separation? → no
z-separation? → yes: 0 = f,y = f 2 + g,x = g,x +yg2

y-separation? → yes: 0 = g,x = g2 (from the third equation from the z-separation)
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If z2 had been replaced in (4) by a third function h(z) then direct separation would not
have been possible. The situation changes if h is a parametric function which is assumed to
be independently given and which should not be calculated, i.e. f and g should be calculated
for any arbitrary given h(z). Then the same separation could have been done with an extra
treatment of the special case h,zz = 0, i.e. h linear in z. This different treatment of unknown
functions makes it necessary to input explicitly the functions to be calculated as the third
argument to Crack. The input in this case would be

depend f,x,y;

depend g,x;

depend h,z;

crack({df(f,y)+z*f**2+(z+h)*df(g,x)+h*y*g**2},{},{f,g},{z});

The fourth parameter for Crack is necessary to make clear that in addition to the variables
of f and g, z is also an independent variable.

If the flag independence is not nil then Crack will stop if linear independence of the
explicit expressions of the separation variable (in the example 1, z, z2) is not clear and ask
interactively whether separation should be done or not.

7.4 Indirect separation of PDEs

For the above direct separation a precondition is that at least one variable occurs only explicitly
or as an argument of parametric functions. The situation where each variable is an argument
of at least one function but no function contains all independent variables of an equation needs
a more elaborate treatment.

The steps are these

• A variable xa is chosen which occurs in as few functions as possible. This variable will be
separated directly later which requires that all unknown functions fi containing xa are to
be eliminated. Therefore, as long as F := {fi} is not empty do the following:

– Choose the function fi(yp) in F with the smallest number of variables yp and with
zij as those variables on which fi does not depend.

– Identify all different products Pik of powers of fi-derivatives and of fi in the equation.
Determine the zij-dependent factors Cik of the coefficients of Pik and store them in
a list.

– For each Cil (i fixed, l = 1, . . .) choose a zij and :

∗ divide by Cil the equation and all following elements Cim with m > l of this list,
such that these elements are still the actual coefficients in the equation after the
division,

∗ differentiate the equation and the Cim,m > l w.r.t. zij

• The resulting equation no longer contains any unknown function of xa and can be sepa-
rated w.r.t. xa directly in case xa still occurs explicitly. In both cases the equation(s) is
(are) free of xa afterwards and inverting the sequence of integration and multiplication of
all those equations (in case of direct separability) will also result in an equation(s) free of
xa. More exactly, the steps are

– multiplication of the equation(s) and the Cim with m < l by the elements of the
Cik-lists in exactly the inverse order,

– integration of these exact PDEs and the Cim w.r.t. zij.
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• The equations originating that way are used to evaluate those functions which do not de-
pend on xa and which survived in the above differentiations. Substituting these functions
in the original equation, may enable direct separability w.r.t. variables on which the fi
do not depend on.

• The whole procedure is repeated for another variable xb if the original DE could not be
separated directly and still has the property that it contains only functions of a subset of
all variables in the equation.

The additional bookkeeping of coefficients Cik and their updating by division, differentiation,
integration and multiplication is done to use them as integrating factors for the backward
integration. The following example makes this clearer. The equation is

0 = f(x)g(y)− 1

2
xf ′(x)− g′(y)− (1 + x2)y. (5)

The steps are (equal levels of indentation in the example correspond to those in the algorithm
given above)

• x1 := x, F = {f}

– Identify f1 := f, y1 := x, z11 := y

– and P1 = {f ′, f}, C1 = {1, g}
∗ Divide C12 and (5) by C11 = 1 and differentiate w.r.t. z11 = y :

0 = fg′ − g′′ − (1 + x2) (6)

C12 = g′

∗ Divide (6) by C12 = g′ and differentiate w.r.t. z11 = y :

0 = −(g′′/g′)′ − (1 + x2)(1/g′)′

• Direct separation w.r.t. x and integration:

x2 : 0 = (1/g′)′ ⇒ c1g
′ = 1 ⇒ g = y/c1 + c2

x0 : 0 = (g′′/g′)′ ⇒ c3g
′ = g′′ ⇒ c3 = 0

• Substitution of g in the original DE

0 = (y/c1 + c2)f − 1

2
xf ′ − 1/c1 − (1 + x2)y

provides a form which allows Crack standard methods to succeed by direct separation
w.r.t. y

y1 : 0 = f/c1 − 1− x2 ⇒ f ′ = 2c1x
y0 : 0 = c2f − 1

2
xf ′ − 1/c1 ⇒ 0 = c2c1(1 + x2)− c1x

2 − 1/c1

and direct separation w.r.t. x:

x0 : 0 = c2c1 − c1

x2 : 0 = c2c1 − 1/c1

⇒ 0 = c1 − 1/c1

⇒ c1 = ±1 ⇒ c2 = 1.

We get the two solutions f = 1+ x2, g = 1+ y and f = −1− x2, g = 1− y. The corresponding
input to Crack would be

depend f,x;

depend g,y;

crack({f*g-x*df(f,x)/2-df(g,y)-(1+x**2)*y},{},{f,g},{});
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7.5 Solving standard ODEs

For solving standard ODEs the package ODESolve by Malcalm MacCallum and Francis
Wright [15] is applied. This package is distributed with Reduce and can be used indepen-
dently of Crack. The syntax of ODESolve is quite similar to that of Crack
depend function, variable;
odesolve(ODE, function, variable);
In the present form (1998) it solves standard first order ODEs (Bernoulli and Euler type, with
separable variables, . . .) and linear higher order ODEs with constant coefficients. An improved
version is currently under preparation by Francis Wright. The applicability of ODESolve is
increased by a Crack-subroutine which recognizes such PDEs in which there is only one un-
known function of all variables and all occurring derivatives of this function are only derivatives
w.r.t. one variable of only one partial derivative. For example the PDE for f(x, y)

0 = f,xxy +f,xxyy

can be viewed as a first order ODE in y for f,xxy .
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