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Abstract

This package deal, with supersymmetric functions and with algebra of supersym-
metric operators in the extended N=2 as well as in the nonextended N=1 super-
symmery. It allows us to make realization of SuSy algebra of differential operators,
compute the gradients of given SuSy Hamiltonians and to obtain SuSy version of
soliton equations using SuSy Lax approach. There are also many additional pro-
cedures also encountered in SuSy soliton approach, as for example: conjugation
of a given SuSy operator, computation of general form of SuSy Hamiltonians (up
to SuSy-divergence equivalence), checking of the validity of the Jacobi identity for
some SuSy Hamiltonian operators.

1 Introduction

The main idea of the supersymmetry (SuSy) is to treat boson and fermion operators
equally [1,2]. This has been realised by introducing the so called supermultiplets con-
structed from the boson and fermion operators and additionally from the Mayorana
spinors. Such supermultiplets posses the proper transfomations property under the trans-
formation of the Lorentz group. At the moment we have no experimental confirmations
that the supersymmetry appeare in the nature.

The idea of using supersymmetry (SuSy) for the generalization of the soliton equations
[3-7] appeared almost in parallel to the usage of SuSy in the quantum field theory. The
first results, concerning the construction of classical field theories with fermionic and
bosonic fields depending on time and one space variable, can be found in [8-12]. In many
cases, the addition of fermions fields does not guarantee that the final theory becomes
SuSy invariant and therefore this method was named as the fermionic extension in order
to distinguish it from the fully SuSy method.

In order to get a SuSy theory we have to add to a system of k bosonic equations kN
fermion and k(N-1) boson fields (k=1,2,... N=1,2,..) in such a way that the final theory
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becomes SuSy invariant. From the soliton point of view we can distinguish two impor-
tant classes of the supersymmetric equations: the non-extended (N = 1) and extended
(N > 1) cases. Consideration of the extended case may imply new bosonic equations
whose properties need further investigation. This may be viewed as a bonus, but this
extended case is no more fundamental than the non-extended one. The problem of the
supersymmetrization of the nonlinear partial differential equations has its own history,
and at the moment we have no unique solution [13-40]. We can distinguish three differ-
ent methods of supersymmetrization, as for example the algebraic, geometric and direct
method.

In the first two cases we are looking for the symmetry group of the given equation
and then we replace this group by the corresponding SuSy group. As a final product
we are able to obtain SuSy generalization of the given equation. The classification into
the algebraical or geometrical approach is connected with the kind of symmetry which
appears in the classical case. For example, if our classical equation could be described
in terms of the geometrical object then the simple exchange of the classical symmetry
group of this object with its SuSy partner justifies the name geometric. In the case of
algebraic we are looking for the symmetry group of the equation without any reference to
its geometrical origin. This strategy could be applied to the so called hidden symmetry
as for example in the case of the Toda lattice . These methods each have advantages and
disadvantages. For example, sometimes we obtain the fermionic extensions. In the case
of the extended supersymmetric Korteweg-de-Vries equation we have three different fully
SuSy extensions; however only one of them fits to these two classifications.

In the direct approach we simply replace all objects which are appear in the evolution
equation by all possible combinations of the supermultiplets and its superderivative in such
a way that to conserve the conformal dimensions. This is non unique and we yields many
different possibilities. However the arbitrariness is reduced if we additionally investigate
super-bi-hamiltonian structure or try to find its supersymmetric Lax pair. In many cases
this approach is successful.

The utilization of the above methods can be helped by symbolic computer algebraic
and for this reason we prapared the package SuSy2 in the symbolic language REDUCE
[41].

We have implemented and ordered the superfunctions in our program, extensively us-
ing the concept of “ noncom operator ” in order to implement the supersymmetric integro
- differential operators. The program is meant to perform the symbolic calculations using
either fully supersymmetric supermultiplets or the components version of our supersym-
metry. We have constructed 25 different commands to allow us to compute almost all
objects encountered in the supersymmetrization procedure of the soliton equation.

2 Supersymmetry

The basic object in the supersymmetric analysis is the superfield and the supersymmetric
derivative. The superfields are the superfermions or the superbosons [1]. These fields,
in the case of extended N=2 sypersymmetry, depends, in addition to x and t, upon two
anticommuting variables, θ1 and θ2 (θ2θ1 = −θ1θ2, θ

2
1 = θ2

2 = 0 ). Their Taylor expansion
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with respect to the θ
′
s is

b(x, t, θ1, θ2) := w + θ1ζ1 + θ2ζ2 + θ2θ1u, (1)

in the case of superbosons, while for the superfermions reads

f(x, t, θ1, θ2) := ζ1 + θ1w + θ2u + θ2θ1ζ2, (2)

where w and u are classical (commuting) functions depending on x and t , ζ1 and ζ2 are
odd Grassmann valued functions depending on x and t.

In the set of these superfunctions we can defined the usual derivative and the su-
perderivative. Usually, we encounter two different realizations of the superderivative :
the first we call “ traditional ” and the second “ chiral ”.

The traditional realization can be defined by introducing two superderivatives D1 and
D2

D1 = ∂θ1 + θ1∂, (3)

D2 = ∂θ2 + θ2∂, (4)

with the properties:

D1 ∗D1 = D2 ∗D2 = ∂, (5)

D1 ∗D2 + D2 ∗D1 = 0. (6)

The chiral denoted is by

D1 = ∂θ1 −
1

2
θ2∂, (7)

D2 = ∂θ2 −
1

2
θ1∂, (8)

with the properties:

D1 ∗D1 = D2 ∗D2 = 0, (9)

D1 ∗D2 + D2 ∗D1 = −∂. (10)

Below we shall use the name “ traditional” or “ chiral ” or “ chiral1 ”algebras to
denote kind of the commutation realations on the superderivativeis assumed. The “
chiral1 ” algebras case possess, additioanly to the “chiral ” algebra, the commutator of
D1 and D2 denoted as

D3 = D1 ∗D2 −D2 ∗D1. (11)

In SuSy2 package we have will implemented the superfunctions and the algebra of
superderivatives. Moreover, we have defined many additional procedures which are useful
in the supersymetrizations of the classical nonlinear system of partial differential equation.
Different applications of this package to the physical problems could be found in the papers
[34-38].
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3 Superfunctions

The superfunctions are represented in this package by:

bos(f, 0, 0), (12)

for superbosons, while by
fer(g, 0, 0), (13)

for superfermions.
The first index denotes the name of the given superobject, the second denotes the

value of SuSy derivatives, and the last give the value of usual derivative. The bos and fer
objects are declared as the operators and as noncom object in the Reduce language. The
first index can take an arbitrary name but with the following restriction:

bos(0, n,m) = 0, (14)

fer(0, n, m) = 0. (15)

for any values of n,m.
The program has the capability to compute the coordinates of the arbitrary SuSy

expression, using the expansions in the powers of θ. We have here four commands:

A) In order to have the given expression in the components use

fpart(expression). (16)

The output is in the form of the list, in which first element is the zero order term in θ,
second is the first order term in θ1, third is the first order term in θ2 and the fourth is in
θ2 ∗ θ1. For example, the superfunction (11) has the representation

fpart(bos(f, 0, 0)) => {fun(f0, 0),gras(ff1, 0),
gras(ff2, 0), fun(f1, 0)}, (17)

where fun denotes the classical function while the gras the Grassmann function. First
index in the fun or in gras denotes the name of the given object, while the second denotes
the usual derivative.

B) In order to have the bosonic sector only, in which all odd Grassmann functions
disappear, use

bpart(expression). (18)

Example:
bpart(fer(g, 0, 0)) => {0, fun(g0, 0), fun(g1, 0), 0}. (19)

C) In order to have the given coordinates, use

bf part(expression, n), (20)

where n=0,1,2,3.
Example:

bf part(bos(f, 0, 0), 3) => fun(f1, 0). (21)
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D) In order to have the given coordinates in the bosonic sector, use

b part(expression, n), (22)

where n=0,1,2,3.
Example

b part(fer(g, 0, 0), 1) => fun(g0, 0) (23)

Notice that in the program, from the default we switch to on the factor fer, bos, gras, fun.
If you remove this factor, then many commands give you wrong result (for example the
command lyst, lyst1 and lyst2).

4 The inverse and exponentials of superfunctions.

In addition to our definitions of the superfunctions we can also define the inverse and the
exponential of superboson.

The inverse of the given bos function (not to be confused with the “ inverse function
” encountered in the usual analysis) is defined as

bos(f, n, m,−1), (24)

for an arbitrary f, n, m with the property bos(f, n, m,−1)∗bos(f, n, m, 1) = 1. The object
bos(f, n,m, k), in general denotes the k-th power of the bos(f, n, m) superfunction. If we
use the command “let inverse′′ then three indices bos objects are transformed onto four
indices objects.

The exponential of the superboson function is

axp(bos(f, 0, 0)). (25)

It is also possible to use axp(f), but then we should specify what is f.
We have the following representation in the components for the inverse and axp su-

perfunctions

fpart(bos(f, 0, 0,−1)) = {fun(f0, 0,−1),−fun(f0, 0,−1) ∗ gras(ff1, 0),
−fun(f0, 0,−1) ∗ gras(ff2, 0),−fun(f0, 0,−2) ∗ fun(f1, 0, 1)
+2 ∗ fun(f0, 0,−3) ∗ gras(ff1, 0) ∗ gras(ff2, 0)} (26)

fpart(axp(f)) = {axx(bf part(f, 0)), axx(bf part(f, 0)) ∗ bf part(f, 1),
axx(bf part(f, 0)) ∗ bf part(f, 2), axx(bf part(f, 0))
∗(bf part(f, 3) + 2bf part(f, 1) ∗ bf part(f, 2))} (27)

where axx(f) denotes teh exponentiation of the given classical function while fun(f, m, n)
the n th power of the function fun(f, m).

5 Ordering.

Three different superfunctions fer, bos, axp are ordered among themselves as

fer(f, n, m) ∗ bos(h, j, k) ∗ axp(g), (28)

fer(f, n, m) ∗ bos(h, j, k, l) ∗ axp(g), (29)
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indenpendently of the indices. Superfunctions bos and axp are commuting among
themselves, while the superfunctions fer anticommutes among themselves. For these
superfunctions we introduce the following ordering:.

A) The bos objects with three and four indices are ordered as: the first index antilex-
icographically, the second and the third index as decreasing order of natural numbers.
The last, fourth index is not ordered because:

bos(f, n,m, k) ∗ bos(f, n, m, l) => bos(f, n, m, k + l) (30)

B) The anticommuting fer objects we ordered as follows: the first index antilexico-
graphically, second and third index as decreasing order of natural numbers.

Example:

fer(f, n,m) ∗ fer(g, k, l) => −fer(g, k, l) ∗ fer(f, n,m) (31)

for an arbitrary n,m,k,l

fer(f, n, m) ∗ fer(f, n, m) => 0 (32)

for an arbitrary f,n,m.

bos(f, 2, 3, 7) ∗ bos(aa, 0, 3) ∗ bos(f, 2, 3,−7) => bos(aa, 0, 3), (33)

bos(f, 2, 3, 2) ∗ bos(zz, 0, 3, 2) ∗ bos(f, 2, 3,−2) => bos(zz, 0, 3, 2). (34)

C) For all exponential functions we have

axp(f) ∗ axp(g) => axp(f + g). (35)

6 (Super)Differential operators.

We have implemented three different realizations of the supersymmetric derivatives. In
order to select traditional realization declare let trad . In order to select chiral or chiral1
algebra declare let chiral or let chiral1. By default we have traditional algebra.

We have introduced three different types of SuSy operators which act on the super-
functions and are considered as operators and as noncomuting objects in the Reduce
language.

For the usual differentiation we introduced two types of operators:
(i) rigth differentations,

d(1) ∗ bos(f, 0, 0) => bos(f, 0, 1) + bos(f, 0, 0) ∗ d(1); (36)

(ii) left differentations,

fer(f, 0, 0) ∗ d(2) => −fer(f, 0, 1) + d(2) ∗ fer(f, 0, 0). (37)

From this example follows that the third index in the bos, fer object can take an
arbitrary integer value.
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Susy derivatives we denote as der and del. Der and del represent the right and left
operatopns, respectively, and are one component argument operations. The action of
these objects on the superfunctions depends on the choice of the supersymmetric algebra.

Explicitely we have for the traditional algebra:
a) Right SuSy derivative

der(1) ∗ bos(f, 0, 0) => fer(f, 1, 0) + bos(f, 0, 0) ∗ der(1), (38)

der(2) ∗ fer(g, 0, 0) => bos(g, 2, 0)− fer(g, 0, 0) ∗ der(2), (39)

der(1) ∗ fer(f, 2, 0) => bos(f, 3, 0)− fer(f, 2, 0) ∗ der(1), (40)

der(2) ∗ bos(f, 3, 0) => −fer(f, 1, 1) + bos(f, 3, 0) ∗ der(2), (41)

der(1) ∗ bos(f, 0, 0,−1) => −fer(f, 1, 0) ∗ bos(f, 0, 0,−2)+
bos(f, 0, 0,−1) ∗ der(1), (42)

der(2) ∗ axp(bos(f, 0, 0)) => fer(f, 2, 0) ∗ axp(bos(f, 0, 0))+
axp(bos(f, 0, 0)) ∗ der(2). (43)

b) Left SuSy derivative

bos(f, 0, 0) ∗ del(1) => −fer(f, 1, 0) + del(1) ∗ bos(f, 0, 0), (44)

fer(g, 0, 0) ∗ del(2) => bos(g, 2, 0)− del(2) ∗ fer(g, 0, 0), (45)

fer(f, 2, 0) ∗ del(2) => bos(f, 3, 0)− del(1) ∗ fer(f, 2, 0), (46)

bos(f, 3, 0) ∗ del(2) => fer(f, 1, 1) + del(2) ∗ bos(f, 3, 0), (47)

bos(f, 0, 0,−1) ∗ del(1) => fer(f, 1, 0) ∗ bos(f, 0, 0,−2)+
del(1) ∗ bos(f, 0, 0,−1), (48)

axp(bos(f, 0, 0)) ∗ del(2) => −fer(f, 2, 0) ∗ axp(bos(f, 0, 0))+
del(2) ∗ axp(bos(f, 0, 0)). (49)

From these examples follows that the second index in the fer, bos objects can take 0,
1, 2, 3 values only with the following meaning: 0 - no SuSy derivatives, 1 - first SuSy
derivative, 2 - second SuSy derivative, 3 - first and second SuSy derivative.

Using the notations we obtain

der(1) ∗ der(2) ∗ bos(f, 0, 0) => bos(f, 3, 0)+
bos(f, 0, 0) ∗ der(1) ∗ der(2)+
fer(f, 1, 0) ∗ der(2)
−fer(f, 2, 0) ∗ der(1). (50)

For the “chiral ” representation, the meaning of the second argument in the bos or
fer object is same as in the “traditional ” case while the actions of susy operators on the
superfunctions are different. For example we have

der(1) ∗ fer(f, 1, 0) => −fer(f, 1, 0) ∗ der(1), (51)

der(1) ∗ fer(f, 2, 0) => bos(g, 3, 0)− fer(f, 2, 0) ∗ der(1), (52)

der(2) ∗ bos(g, 3, 0) => −fer(g, 2, 1) + bos(g, 3, 0) ∗ der(2) (53)

bos(g, 2, 0) ∗ del(2) => del(2) ∗ bos(g, 2, )). (54)
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For the “chiral1” representation we have different meanig of the second argument in the
bos and fer object. Explicitely the values 0,1,2 in this second arguments denotes the
values of the susy derivatives while 3 denotes the value of the commutator. Explicitey we
have

der(3) ∗ bos(f, 0, 0) => bos(f, 3, 0) + 2 ∗ fer(f, 1, 0, 0) ∗ der(2)
−2 ∗ fer(f, 2, 0) ∗ der(1) + bos(f, 0, 0) ∗ der(3) (55)

der(1) ∗ fer(f, 2, 0) => (bos(f, 3, 0)− bos(f, 0, 1))/2− fer(f, 2, 0) ∗ der(1). (56)

The supersymmetric operators are always ordered in the case of “traditional” algebra
as

der(2) ∗ der(1) => −der(1) ∗ der(2), (57)

del(2) ∗ del(1) => −del(1) ∗ del(2), (58)

der(1) ∗ del(1) => d(1), (59)

der(1) ∗ del(2) => −del(2) ∗ der(1), (60)

and similarly for others.
For the “chiral” algebra we postulate

der(2) ∗ der(1) => −d(1)− der(1) ∗ der(2), (61)

del(2) ∗ del(1) => −d(1)− del(1) ∗ del(2), (62)

der(1) ∗ del(1) => 0, (63)

der(1) ∗ del(2) => −d(1)− del(2) ∗ der(1), (64)

while for “chiral1” additionaly we have

der(3) ∗ der(1) => −der(1) ∗ d(1) (65)

der(1) ∗ der(3) => der(1) ∗ d(1) (66)

der(3) ∗ der(2) => der(2) ∗ d(1) (67)

der(2) ∗ der(3) => −der(2) ∗ d(1). (68)

Please notice that if we would like to have the commponents of some bos(f, 3, 0,−1)
superfunction in the “chiral” representation then new object appear. Indeed,

b part(bos(f, 3, 0,−1), 1) => fun(f1,0, f0,1,−1), (69)

We should consider this five indices object fun as

fun(f, n, g,m,−k) => (fun(f, n)− fun(g,m)/2)−k. (70)

Similar interpretation is valid for other commands containing objects like bos(f, 3, n,−k)

7 Action of the operators.

In order to have the value of the action of the given operator on some superfunction we
introduce two operations pr and pg.
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A)
pr(n, expression) (71)

where n:=0,1,2,3. This command denotes the value itself of action of the SuSy derivatives
on the given expression.For n=0 there is no SuSy derivative, n=1 corresponds to der(1),
n=2 to der(2), while n=3 to der(1) ∗ der(2).

Example:
pr(1, bos(f, 0, 0)) => fer(f, 1, 0), (72)

pr(3, fer(g, 0, 0)) => fer(f, 3, 0). (73)

B) For the usual derivative we reserve command

pg(n, expression) (74)

where n=0,1,2,...., denotes the value of the usual derivative on the expression
Example

pg(2, bos(f, 0, 0)) => bos(f, 0, 2) (75)

8 Supersymmetric integration

There is one command s int(number, expression, list) only. This allows us to compute the
value of supersymmetric integration of arbitrary polynomial expression constructed from
fer and bos objects. It is valid in the traditional representation of the supersymmetry.
The numbers takes the following values: 0 → corresponds for usual ”x” integration, 1 or
2 for the first or second supersymmetric index while 3 to the integration both over first
and second indexes. The list is the list of the names of the superfunctions over which
we would like to integrate. The output of this command is in the form of the integrated
part and non-integrated part. The non-integrated part is denoted by del(−number) if
number = 1, 2, 3 and by d(−3) for 0.

Example

s int(0, 2bos(f, 0, 1) ∗ bos(f, 0, 1), {f}) = bos(f, 0, 0)2, (76)

s int(1, 2 ∗ fer(f, 1, 0) ∗ bos(f, 0, 0), {f}) = bos(f, 0, 0)2, (77)

s int(3, bos(f, 3, 0) ∗ bos(g, 0, 0) + bos(f, 0, 0) ∗ bos(g, 3, 0), {f, g}) = (78)

bos(f, 0, 0) ∗ bos(g, 0, 0)− (79)

del(−3)
(
fer(f, 1, 0) ∗ fer(g, 2, 0)− fer(f, 2, 0) ∗ bos(g, 1, 0)

)
. (80)

9 Integration operators.

We introduced four different types of integration operators: right and left denoted as
d(−1) and d(−2) respectively and moreover two different types of neutral integration
operators d(−3) and d(−4). In first two cases they act acorrding to the formula

d(−1) ∗ bos(f, 0, 0) =
∞∑

i=1

(−1)i ∗ bos(f, 0, i− 1) ∗ d(−1)i, (81)
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for the right integration, while

bos(f, 0, 0) ∗ d(−2) =
∞∑

i=1

d(−2)i ∗ bos(f, 0, i− 1), (82)

for the left integration.
Before using these operators the precision of the integration must be specified by the

declaration ww := number. If required this precision can be changed by clearing the old
value of ww and introducing the new one. Both operators are defined by their action and
by the properties

d(1) ∗ d(−1) = d(−1) ∗ d(1) = d(2) ∗ d(−1) = d(2) ∗ d(−1) = 1, (83)

der(1) ∗ d(−1) = d(−1) ∗ der(1), (84)

d(−1) ∗ del(1) = del(1) ∗ d(−1), (85)

and analogously for d(−2) and der(2), del(2).
The neutral operator does not show up any action on some expression but has several

properties. More precisly

d(1) ∗ d(−3) = d(−3) ∗ d(1) = d(2) ∗ d(−3) = d(−3) ∗ d(2) = 1, (86)

der(k) ∗ d(−3) = d(−3) ∗ der(k), (87)

d(−3) ∗ del(k) = del(k) ∗ d(−3), (88)

while for d(−4)

d(1) ∗ d(−4) = d(−4) ∗ d(1) = d(2) ∗ d(−4) = d(−4) ∗ d(2) = 1, (89)

der(k) ∗ d(−4) = d(−4) ∗ der(k), (90)

where k=1, 2.
From the last two formulas we see that d(−3) operator is transparent under del oper-

ators while d(−4) operators stops del action.
Similarly to d(−3) or d(−4) it is also possible to use the neutral differentation operator

denote d(3). It has the properties

d(3) ∗ d(−4) = d(−4) ∗ d(3) = d(3) ∗ d(−3) = d(−3) ∗ d(3) = 1, (91)

der(k) ∗ d(3) = d(3) ∗ der(k), (92)

d(3) ∗ del(k) = del(k) ∗ d(3), (93)

where k=1, 2.
We can have also “ accelerated ” integration operators denoted by dr(−n) where n is

a natural number. The action of these operators is exactly the same as d(−1) ∗ ∗n but
instead of using n - times the integration formulas in the case d(−1) ∗ ∗n, dr(−n) uses
only once the following formula

dr(−n) ∗ bos(f, 0, 0) =
ww∑

s=0

(−1)s
(

n + s− 1
n− 1

)
bos(f, 0, s)dr(−n− s). (94)
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We have to, similarly to the d(−1) case, declare also the ”precision” of integration if
we would like to use the ”accelerated” integration operators. The switch let cutoff
and command cut := number allows us to annihilate the higher order terms in the
dr integrations procedure. Moreover, the switch let drr automatically changes usual
integrations d(−1) into ”accelerated” integrations dr. The switch let nodrr changes dr
integrations onto d(−1).

10 Useful Commands.

A) Combinations.
We encounter, in many practical applications, problem of construction of different

possible combinations of superfunction and super-pseudo-differential elements with the
given conformal dimensions. We declare three different procedures in order to realize this
requirement:

w comb(list, n, m, x), (95)

fcomb(list, n, m, x), (96)

pse ele(n, list, m). (97)

All these commands are based on the gradations trick (to associate with superfuction and
superderivative the scaling parametr - conformal dimension). We consider here k/2 and
k (k natural number and k > 0 ) gradation only.

Command w comb gives the most general form of superfunctions combinations of given
gradation. It is four argument procedure in which:

(i) first argument is a list in which each element is three elements list in which: first
element is the name of the superfuction from which we would like to construct our com-
binations, second denotes its gradation while the last can take two values f - in the case
where superfunction is superfermionic or b - for superbosonic.

(ii) second argument is a number - the desired gradation.
(iii) third argument is an arbitrary not numerical value which enumerates the free

parameters in our combinations.
(iv) fourth argument takes two values
f - in the case when whole combinations should be fermionic or
b - for the bosonic nature of combination.

Examples:

w comb({{f, 1, b}, {g, 1, b}}, 2, z, b) => z1 ∗ bos(f, 3, 0) + z2 ∗ bos(f, 0, 1)+
z3 ∗ bos(f, 0, 0)2; (98)

w comb({{f, 1, b}}, 3/2, g, f) => g1 ∗ fer(f, 1, 0) + g2 ∗ fer(f, 2, 0); (99)

Command fcomb, simillarly to w comb, gives us general form of an arbitrary combi-
nation of superfunctions modulo divergence terms. It is four argument command with the
same meaning of arguments as in w comb case. This command first calls w comb, then
eliminates in the canonical way SuSy - derivatives, by integrations by parts of w comb. By
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canonical we understand that (SuSy) derivatives are removed first from the superfunction
which is first in the list of superfuctions in fcomb command, next from second etc.

In order to illustrate cannonical manner of elimination of (SuSy) derivatives let us
consider some expression which is constructed from f, g and h superfunctions and their
(SuSy) derivatives. This expression is first splited onto three subexpression called f −
expression, g−expression and h−expression. F−expression contains only combinations
of f with f or g or (and) h, while g − expression contains only combinations of g with g
or h and last h − expresion contains only combinations of h with h. Command fcomb
removes first (SuSy) derivatives from f in f-exprssion, next from g in g-expression, and
finally from h in h-expression. Let us present such situation on the following example

fer(f, 1, 0) ∗ fer(g, 2, 0) + bos(g, 0, 0) ∗ bos(g, 3, 0). (100)

Let us now assume that we have f, g order then f−expression is fer(f, 1, 0)∗fer(g, 2, 0),
while g − expression is bos(g, 0, 1) ∗ bos(g, 3, 0). Now canonical elimination gives us

−bos(f, 0, 0) ∗ bos(g, 3, 0) + 2 ∗ bos(g, 0, 0) ∗ bos(g, 3, 1), (101)

while assuming g, f order we obtain

−bos(f, 3, 0) ∗ bos(g, 0, 0) + 2 ∗ bos(g, 0, 0) ∗ bos(g, 3, 1) (102)

Example

fcomb({{u, 1}}, 4, h) => h(1) ∗ fer(u, 2, 0) ∗ fer(u, 1, 0) ∗ bos(u, 0, 0)+
h(2) ∗ bos(u, 3, 0) ∗ bos(u, 0, 0)2+
h(3) ∗ bos(u, 0, 2) ∗ bos(u, 0, 0)+
h(4) ∗ bos(u, 0, 0)4; (103)

Finally, comand pse ele gives us the general form of element which belongs to algebra
of pseudo-SuSy derivative algebra [3]. Such element can be symbolically written down as

(bos + fer ∗ der(1) + fer ∗ der(2) + bos ∗ der(1) ∗ der(2)) ∗ d(1)n, (104)

for the traditional and “chiral” representation while for “chiral1” as

(bos + fer ∗ der(1) + fer ∗ der(2) + bos ∗ der(3)) ∗ d(1)n, (105)

where at the moment, bos and fer denotes some an arbitrary superfunctions. The men-
tioned command allows us to obtain such element of the given gradation which is con-
structed from some set of superfunctions of given gradation. This command is three
arguments.

pse ele(wx,wy, wz), (106)

First index denotes the gradation of SuSy-pseudo-element. Second the names and gra-
dations of the superfunctions from which we would like to construct our element. This
second index wy is in the form of list exactly the same as in the w comb command. Last
index denotes the names which enumerates the free parameters in our combination.

B) Parts of the pseudo-SuSy-differential elements.
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In order to obtain the components of the (pseudo)-SuSy element we have three different
commands:

s part(expression, n), (107)

d part(expression,m), (108)

sd part(expression, n,m), (109)

where n,m=0,1,2,3,....
The s part gives us coefficient standing in n-th SuSy derivative. However notice, that

for n=3 we should consider the coefficients standing in the der(1) ∗ der(2) operator for
the traditional or chiral representations while for the chiral1 representation the terms
standing in the der(3) operator. The d part command give us the coefficients standing
in same power of d(1), while sd part the term standing in n-th SuSy derivative and m-th
power of usual derivative.

Example:

ala : = bos(g, 0, 0) + fer(f, 3, 0) ∗ der(1) + (fer(h, 2, 0) ∗ der(2)+
bos(r, 0, 0) ∗ der(1) ∗ der(2)) ∗ d(1); (110)

s part(ala, 3) => fer(f, 3, 0); (111)

d part(ala, 1) => fer(h, 2, 0) ∗ der(2)+
bos(r, 0, 0) ∗ der(1) ∗ der(2); (112)

sd part(ala, 0, 0) => bos(g, 0, 0); (113)

C) Adjoint.
The adjoint of some SuSy operator is defined in standard form as

<< α, PP ∗ β >>=<< β, PP ∗α >> (114)

where α and β are the test superboson functions, PP is the opertor under consideration
and << α, β >> is a scalar product defined as

<< α, β >>=
∫

α ∗ β ∗ dθ1 ∗ dθ2 (115)

where we use the Berezin integral definition [1]
∫

θi ∗ dθj = δi,j, (116)
∫

dθi = 0. (117)

For this operation we have command

cp(expression); (118)

Examples:

cp(der(1)) => −der(1), (119)

cp(del(1) ∗ fer(r, 1, 0) ∗ der(1)) => fer(r, 1, 1) + fer(r, 1, 0) ∗ d(1)−
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del(1) ∗ bos(r, 0, 1), (120)

From the last example there follows that it is possible to define cp(del(1)∗fer(r, 1, 0)∗
der(1)) in the different but equivalent manner namely as fer(r, 1, 0) ∗ d(1)− bos(r, 0, 1) ∗
der(1).

From the practical point of view, we do not define the conjugation for the d(−1) and
d(−2) operators, because then we should define the precision of the action of the operators
d(−1) or d(−2) and even then, we would obtain very complicated formulas. However, if
somebody decides to use this conjugation to the d(−1) or to the d(−2), it is recommended,
first to change by hand, these operators on d(−3), next to compute cp and change once
more d(−3) into d(−1) or d(−2) together with the declaration of the precision.

D) Projection.
In many cases, especially in SuSy approach to soliton theory we have to obtain pro-

jection onto the invariant subspace (with respect to commutator) of algebra of pseudo-
SuSy-differential algebra. There are three different subspaces [4] and hence we have two
argument command

rzut(expression, n) (121)

in which n=0, 1, 2.
Example

ewa : = (bos(f, 0, 0) + fer(f1, 1, 0) ∗ der(1) + fer(f2, 2, 0) ∗ der(2)+
bos(f3, 0, 0) ∗ der(1) ∗ der(2)) + (bos(g, 0, 0)+
fer(g1, 1, 0) ∗ der(1) + fer(g2, 2, 0) ∗ der(2)+
bos(g3, 0, 0) ∗ der(1) ∗ der(2)) ∗ d(1), (122)

rzut(ewa, 0) => ewa, (123)

rzut(ewa, 1) => ewa− bos(f, 0, 0); (124)

rzut(ewa, 2) => bos(f3, 0, 0) ∗ der(1) ∗ der(2) + (fer(g1, 1, 0) ∗ der(1)
+fer(g2, 2, 0) ∗ der(2)+
bos(g3, 0, 0) ∗ der(1) ∗ der(2)) ∗ d(1), (125)

E) Analogon of coeff.
Motivated by practical applications, we constructed for our supersymmetric functions

three commands, which allow us to obtain the list of the same combinations of some
superfunctions and (SuSy) derivatives from some given operator-valued expression.

The first command is one argument

lyst(expression) (126)

with the output in the form of list.
Example

magda := fer(f, 1, 0) ∗ fer(f, 2, 0) ∗ a1 + der(1), (127)

lyst(magda) => {fer(f, 1, 0) ∗ fer(f, 2, 0) ∗ a1, der(1)}, (128)
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The second command is also one argument

lyst1(expression) (129)

with the output in the form of list in which each element is constructed from coefficients
and (SuSy) operators of corresponding element in lyst list. For example

lyst1(magda) => {a1, der(1)}, (130)

The third command is also one argument

lyst2(expression) (131)

with the output in the form of list in which each element is constructed from coefficients
standing in the given expression. For exampla

lyst2(magda) => {a1, 1} (132)

F) Simplifications.
If we encounter during the process of computations such expression

fer(f, 1, 0) ∗ d(−3) ∗ fer(f, 2, 0) ∗ d(1) (133)

it is not reduced further. On the other side we can replace d(1) onto d(2) and back d(2)
onto d(1). In order to do such replacement we have the command

chan(expression) (134)

Example

chan(fer(f, 1, 0) ∗ d(−3) ∗ fer(f, 2, 0) ∗ d(1)) =>
−fer(f, 2, 0) ∗ fer(f, 1, 0)− fer(f, 1, 0) ∗ d(−3) ∗ fer(f, 2, 1). (135)

Notice that as the result we kill the d(1) operation.

G) O(2) invariance.
In many cases in the supersymmetric theories we deal with the O(2) invariance of

SuSy indices. This invariance follows from the physical assumption on the nonprivileging
the ”fermionic” coordinates in the superspace. In order to check whether our formula
posseses such invariance we can use

odwa(expression) (136)

This procedure replaces in the given expresion der(1) onto−der(2) and der(2) onto der(1).
Next, it changes, in the same manner, the values of the action of these operators on the
superfunctions.
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F) Macierz
Similarly to the representation of the superfunctions in the components We can define

the supercomponent form for the pse ele objects similarly to the representation of the
supersfunctions. Usually we can consider such object as the matrix which acts on the
components of the superfunctions.It is realized in our program using the command :

macierz(expression, x, y), (137)

where expression is the formula under consideration while x can take two values f or b
depending wheather we would like to conside bosonic (b) part or fermionic (f) part of
the expression. Last index in this command denotes the option in which we acts on the
bosonic or fermionic superfunction. It takes two values f- for fermionic test superfunction
or b - for bosonic case. More explicitely we obtain

macierz(der(1) ∗ der(2), b, f) =




0 0 0 0
0 0 d(1) 0
0 −d(1) 0 0

−d(1) ∗ ∗2 0 0 0


 (138)

macierz(der(1) ∗ der(2), f, b) =




0 0 0 0
0 0 0 d(1)

−d(1) 0 0 0
0 0 0 0


 . (139)

11 Functional gradients.

In SuSy soliton approach we very frequently encounter problem of computing the gra-
dient of the given functional. The usual definition of the gradient [2] is adopted, in the
supersymmetry also.

H
′
[v] =< gradH, v >, (140)

H
′
[v] =

∂

∂ε
H(u + εv) |ε=0, (141)

where H denotes some functional which depends on u. v denotes vector under which we
compute the gradient and <,> the relevant scalar product.

We implemented all that in our package for the “tradicional ” algebra only. In order
to compute the gradient with respect to some superfuction use

gra(expression, f), (142)

where ”expression” is the given density of the functional, while f denotes the first index
in the superfunction ( name of the superfunction).

Example
gra(bos(f, 3, 0) ∗ fer(f, 1, 0), f) => −2 ∗ fer(f, 2, 1) (143)

For practical use we perform two additional commands:

dyw(expression, f) (144)

war(expression, f). (145)
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The first computes the variation of expression with respect to superfunction f, next re-
moves (via integrations by parts) SuSy- derivatives from varied functions and finally
produces list of factorized fer and bos superfunctions. When the given expression is full
(SuSy)-derivative, the result of the dyw command is 0 and hence this command is very
usefull in verifications of (SuSy)-divergences of expressions.

When result of applications of dyw command is not zero then we would like to have
the system of equations on the coefficients standing in the same factorized fer and bos
superfunction. We can quickly obtain such list using command war(expression, f) with
the same meaning of arguments as in the dyw command.

Examples
xxx := fer(f, 1, 0) ∗ fer(f, 2, 0) + x ∗ bos(f, 3, 0)2; (146)

dyw(xxx, f) => {−2 ∗ bos(f, 3, 0) ∗ bos(f, 0, 0),
−2 ∗ x ∗ bos(f, 0, 2) ∗ bos(f, 0, 0)} (147)

war(xxx, f) => {−2,−2 ∗ x}. (148)

12 Conservation Laws.

In many cases we would like to know whether the given expression is a conservation law
for some Hamiltonian equation. We can quikly check it using

dot ham(equation, expression) (149)

where ”equation” is a set of two elements list in which first element denotes the function
while the second its flow. The second argument should be understand as the density
of some conserved current. For example, for SuSy version of the Nonlinear Schrodinger
Equation [7] we obtain

ew : = {{q,−bos(q, 0, 2) + bos(q, 0, 0)3 ∗ bos(r, 0, 0)2−
2 ∗ bos(q, 0, 0) ∗ pr(3, bos(q, 0, 0) ∗ bos(r, 0, 0))},
{r, bos(r, 0, 2)− bos(q, 0, 0)2 ∗ bos(r, 0, 0)3+
2 ∗ bos(r, 0, 0) ∗ pr(3, bos(q, 0, 0) ∗ bos(r, 0, 0))}}, (150)

ham : = bos(q, 0, 1) ∗ bos(r, 0, 0) + x ∗ bos(q, 0, 0)2 ∗ bos(r, 0, 0)2, (151)

yyy : = dot ham(ew, ham). (152)

As the result of previous computations we have a complicated expression which is not
zero. We woulld like to interpreted it as a full (SuSy)-divergence and we can quickly
verify it, if we use command war. We can solve, obtained list of equations, using known
techniques. For example, in our previous case we obtain

war(yyy, q) => {−4 ∗ x,−8 ∗ x,−4 ∗ x}; (153)

war(yyy, r) => {4 ∗ x, 8 ∗ x, 4 ∗ x}; (154)

and we conclude that our ham is a constant of motion if x=0.
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It is also possible to use command dot ham to the pseudo-SuSy-differential element
what is very useful in SuSy approach to Lax operator in which we would like to check
validity of the formula

∂t ∗ L := [L,A]. (155)

where A is a some (SuSy) operator.

13 Jacobi Identity.

The Jacobi identity for some SuSy - hamiltonian operators is verified using the relation

<< α, P ‘
(Pβ) ∗ γ >> +cyclic permutation(α, β, γ), (156)

where P ‘ denotes the directional derivative along the P (β) vector and <<,>> scalar
product. Directional derivative is defined in the standard manner as [44]

F
′
(u)[v] =

∂

∂ε
F (u + εv) |ε=0, (157)

where F is some functional depending on u. V is a directional vector.
In this package we have several commands which allow us to verify the Jacobi identity.

We have the possibility to compute, indenpendently of veryfing Jacobi identity, directional
derivative for the given Hamiltonian operator along the given vector using

n gat(pp, wim) (158)

where pp is scalar or matrix Hamiltonian operator. Wim denotes components of a vector
along which we compute derivative and has the form of list in which each element has
following representation

bos(f) =>< expression > . (159)

The bos(f), in the last formula, denotes the shift of bos(f, 0, 0) superfunction according
to definition of directional derivative.

In order to compute Jacobi identity use command

fjacob(pp, wim), (160)

with the same meaning of pp and wim as in n gat command.
Notice that ordering of components in wim list is important and is connected with

interpretation of components of Hamiltonian operator pp as a set of Poisson brackets
constructed just from elements of wim list. For example, in our scheme, first component
of wim is always connected with element, from which we create Poisson bracket and which
corresponds to first element on the diagonal of pp, second element of wim with second
element on diagonal of pp and etc.

As the result of applications of fjacob command to some Hamiltonian operator we
obtain a complicated formula, not necesarily equal to zero but which would be expressed
as (SuSy) divergence. However, we can quickly verify it using the same method as in
dot ham command which has been described in previous section.
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Usually, after the application of the fjacob command to some matrix Hamiltonian
operator we obtain the hudge expression which is too complicated to analyze even when
we would like to check its (SuSy)divergence. In this case we could extract from fjacob
expression terms containing given components of vector test functions fixed by us. We
can use in this order command

jacob(pp, wim, mm) (161)

where pp and wim has the same meaning as in fjacob case while mm is a three elements
list denoting the components of α, β, γ.

This command is not prepered to compute in full the Jacobi identity, which con-
tains the integrations operators. We do not implement here the symbolic integrations of
superfunctions in order to simplify the final results.
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14 The list of Objects, Commands and Switches

Objects:

bos(f,n,m) bos(f,n,m,k) fer(f,n,m) axp(f) fun(f,n)
fun(f,n,m) gras(f,n) axx(f) d(1) d(2)

d(3) d(-1) d(-2) d(-3) d(-4)
dr(-n) der(1) der(2) del(1) del(2)

Commands

fpart(expression) bpart(expression) bf part(expression,n)
b part(expression,n) pr(n,expression) pg(n,expression)
w comb ({ { f,n,x },...} ,m,z,y) fcomb ({ { f,n,x },...},m,z,y) pse ele (n,{ { f,n },... },z)
s part(expression,n) d part(expression,n) sd (expression,n,m)
cp(expression) rzut(expression,n) lyst(expression)
lyst1(expression) lyst2(expression) chan(expression)
odwa(expression) gra(expression,f) dyw(expression,f)
war(expression,f) dot ham(equations,expression) n gat(operator,list)
fjacob(operator,list) jacob(operator,list,{ α, β, γ }) macierz(expression,x,y)
s int( numbers, expession,list)

Switches

trad chiral chiral1 inverse drr nodrr
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